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Abstract

Let A and B be unital finite separable simple amenable C*-algebras which satisfy the
UCT, and B is Z-stable. Following [7], we show that two unital homomorphisms from"A
to B are approximately unitarily equivalent if and only if they induce the same element in
KL(A, B), the same affine map on tracial states and the same Hausdorffified algebraic K
group homomorphism. A complete description of the range of invariant for unital-homomor-
phisms is also given.

1 Introduction

Let X and Y be two compact Hausdorff spaces, and denote by C'(X) (or C(Y')) the C*-algebra
of complex-valued continuous functions on X (or Y). Any continuous map A : Y — X induces
a homomorphism ¢ from the commutative C*-algebra C'(X) into the commutative C*-algebra
C(Y) by ¢o(f) = f oA, and any homomorphism from C(X) to C(Y) arises this way (in this
paper, by homomorphisms or isomorphisms between C*-algebras, we mean *-homomorphisms
or *-isomorphisms). It should be noted that, by the Gelfand transformation, every unital com-
mutative C*-algebra has the form C(X) as above. Therefore, to study continuous maps from Y’
to X is equivalent to study the homomorphisms from C(X) to C(Y).

We study the non-commutative version of this. In this paper, we consider only simple C*-
algebras. The paper is a continuation of [18]. The first part of results can be stated as follows:
Let A and B be unital finite separable simple amenable C*-algebras which satisfy the UCT
such that B is Z-stable. Let ¢, :»A — B be two unital monomorphisms. Then there exists a
sequence of unitaries {u,}'C B such that

h_{n urp(a)u, = ¢(a) for all a € A,
if and only if
] = W] in KL(A, B), or =¢r and ¢F =,

where o, T(B) — T(A) are the continuous affine maps induced by ¢ and 1, where T'(A)
and T'(B) are tracial state spaces of A and B, and % and ¢ are induced homomorphisms from
U(A)/CU(A) to U(B)/CU(B), respectively, and, where U(A) and U(B) are unitary groups
of A and B, and CU(A) and CU(B) are the closures of commutator subgroups of A and B,
respectively (see Theorem 4.3 and see [18] for the cases that A may not be simple, also earlier
results in [16], see also [19]).

In the case that B is a unital purely infinite simple C*-algebra, T'(B) = ). Then ¢ and ¢r
are both trivial maps. Also, by Corollary 2.7 of [8], U(B)/CU(B) = {0}. One ignores the trivial
maps ¢t and ¥*. Without assuming A is simple, the same result as Theorem 4.3, in the case B
is purely infinite simple, is known as stated as Theorem 6.7 of [11].

Theorem 4.3 is a generalization of Theorem 5.8 of [18] at least in the case that A is simple.
The proof also follows the same lines as described in Remark 5.7 of [18] using the established
results in [6] and [7].



The second part of this research is seeking the range of the invariant for the homomorphisms
from A to B. Similar results were also obtained in [18]. Let k € K L(A, B) be a strictly positive
element (see Definition 2.6) with x([14]) = [1g], k7 : T(B) — T(A) be a continuous affine
maps, and let x, : U(A)/CU(A) — U(B)/CU(B) be a continuous homomorphism. As in
[18], not all compatible triples (k, k7, k) are proved to be reached by unital homomorphisms.
This is not just the limitation of the method. By the classification theorem in [15] and [17],
there is a unital separable simple Z-stable C*-algebra A with a unique tracial state which
is locally approximated by sub-homogeneous C*-algebras such that (Ko(A), Ko(A)4,[la]) =
(Z,Z+,1) and K1(A) = Z/pZ for some prime number p > 1. By Lemma 6.8 of [18], there is
a unital homomorphism ¢ : A — Z which induces identity on Ky(A). We found that, up to
approximately unitary equivalence, ¢ is the only such homomorphism which induces K L(yp).
However, there are other continuous homomorphism ~ : U(A)/CU(A) — U(Z)/CU(Z) which
are compatible to K'L(y) and the identity map on the tracial state spaces (which has only
one point for both C*-algebras). In other words, there are compatible triples (x, k7, k) which
cannot be reached by unital homomorphisms.

This is by no means an accident. Fix a compatible pair (k, k7). Denote by
Homy, 4., (U(A)/CU(A),U(B)/CU(B)) the subset of those homomorphisms in
Hom(U(A)/CU(A),U(B)/CU(B)) which are compatible to the pair (x, k7). There is a bi-
jection from Homy .. (U(A)/CU(A),U(B)/CU(B)) to the group Hom(K:(A),T), where T' =
Aff(T(B))/pp(Ko(B)) and where pp : Ko(B) — Aff(T(B)) (the space of all real continuous
affine functions on the tracial state space T'(B) of B) is the usual pairing of Ky(B) and T'(B).

Let Homy, ;. app(A, B) be the approximately unitary equivalence classes of unital homomor-
phisms ¢ such that ¢ induce the pair (K L(p), ¢1) = (k, k7). We show that Homy, .., app(A, B) is
not empty. The uniqueness part of this paper gives an injective map from Homy, ;. app (A4, B) to a
subgroup of Hom(K7(A), T'). This subgroup is isomorphic to the group Hom (K (A)/Tor(K1(A)),T).
Theorem 5.10 shows that there is a splitting short exact sequence which further describes this
subgroup. It turns out (see 5.15), whenever Rpp(Ko(B)) # pp(Ko(B)) and K;(A) has a tor-
sion, this subgroup is a proper subgroup of Hom(K(A),T'). In those cases, there are compatible
triples (s, KT, K) which cannot be reached by unital homomorphisms. We also show that there
is another way to describe the'range of the invariant of unital homomorphisms by considering
a sequence of compatible triples which complements the description of the range of unital ho-
momorphisms mentioned above (see Theorem 6.5 and Remark 6.6). The group U(A)/CU(A) is
also an essential part of the invariant set for the classification of non-simple C*-algebras with
ideal property (not just for homomorphisms), see [4] and [5] (see also [21] for general information
about C*-algebras with ideal property).
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2 Notations

Definition 2.1. Let A be a unital C*-algebra. Denote by As,. the self-adjoint part of A and
A, the set of all positive elements of A. Denote by U(A) the unitary group of A, and denote
by Up(A) the normal subgroup of U(A) consisting of those unitaries which are in the connected
component of U(A) containing 14. Denote by DU(A) the commutator subgroup of Uy(A) and



CU(A) the closure of DU(A) in U(A).

Definition 2.2. Let A be a unital C*-algebra and let T'(A) denote the simplex of tracial states
of A, a compact subset of A*, the dual of A, with the weak™ topology. Denote by Aff(T'(A)) the
space of real valued affine continuous functions on 7'(A).

Let A be a unital stably finite C*-algebra with T(A) # (). Let 7 € T'(A). For each integer
n > 1, we will continue to use 7 for its extension 7 ® Tr on M, (A), where Tr is the standard
trace on M,,.

Denote by p4 : Ko(A) — Aff(T'(A)) the order preserving homomorphism defined by p4([p])(7) =
7(p) for any projection p € M, (A), n =1,2,... (see the convention above).

Suppose that B is another C*-algebra with T'(B) # () and ¢ : A — B is a unital homo-
morphism. Then ¢ induces a continuous affine map @7 : T(B) — T(A) defined by ¢r(7)(a) =
T(p(a)) for all @ € A and 7 € T(B). Denote by ¢4 : Aff(T'(A)) — Aff(T(B)) the continuous map
induced by 7.

Definition 2.3. Let A be a unital C*-algebra, and let u € Uy(A). Let u(t) € C([0,1], A) be a
piecewise smooth path of unitaries such that «(0) = v and u(1) = 1. Then the de la Harpe—
Skandalis determinant of the path {u(t)}o<t<1 is defined by

L du
Det({u(t) bo<t<1)(T) = 217r2/0 T(ddit)u(t)*)dt for all 7 € T(A),

which induces a homomorphism
Det : Up(A) — AE(T(4))/pa(Ko(A)).
The determinant Det can be extended to a map from Up(Mu(A)) into
AB(T(4))/pa(Ko(A)).

Definition 2.4. Suppose that A'is a unital C*-algebra with T'(A) # (). Recall that CU(A) is
the closure of the commutator subgroup of Up(A). Let u € U(A). We shall use u to denote the
image in U(A)/CU(A). It was proved in [25] that there is a splitting short exact sequence

o0 [e.e] e
0 = AfF(T(A))/pa(Fo(4) = | UM(4))/ | CUM(A)) =5 Ki(A) — 0. (e21)
n=1 n=1
For each A, we will fix one splitting map sa : Ki(A) — U,~, UM, (A))/ U2, CU(M,(A))
such that T1G! o s4 = idg, (4) -
In the case that A has stable rank no more than k& (k > 1), one may have

0 — Aff(T(A))/pa(Ko(A)) — U(My(A)/CU(My(A)) HC’ASA K1(4) = 0. (e2.2)

Definition 2.5. Let ¥4 : Aff(T(A)) — Aff(T(A))/pa(Ko(A)) be the quotient map.

Definition 2.6. Let A be a unital separable C*-algebra and B be a unital finite simple Z-
stable C*-algebra. Denote by KL.(A, B)™" the subset of those elements x in KL(A, B) such
that 5(Ko(A) \ {0}) C Ko(B); \ {0}) and ([14]) = [15].

Suppose, in addition, T'(A) # 0. Let kp : T(B) — T(A) be a continuous affine map. Then s
induces an affine continuous map xy : Aff(T'(A)) — Aff(T(B)). The pair (s, k1) is compatible if

pB(K(x))(T) = pa(x)(kp(T)) for all z € Ky(A) and 7 € T(B). (e2.3)



In particular, ky(pa(Ko(B))) C p(Ko(B)). Thus k4 induces a homomorphism
e+ AR(T(4))/pa(Ro(A)) — ARR(T(B))/pp(Ko(B)).

For the convenience, let us also assume that A has stable rank at most n. Let
Ky UM, (A))/CU(My(A)) = U(My(B))/CU(My(B)) be a continuous homomorphism. We
say that (k, k7, k) is compatible, if (x, k7) is compatible, and the following diagram commutes
HC'M
0— Aff(T(A)/pa(Ko(A)) — U(Mu(A)/CUMn(A)) —= Ki(A) —0

b be, Yt (e2.4)
0= AR(T(B)/pp(Ko(B)) — U(Mu(B)/CUM(B)) —5 K(B) =0,

where k7 is the homomorphism induced by x7p.

Let n > 1 and let j : U(A)/CU(A) — U(M,(A))/CU(M,(A)), j« : U(A)/Up(A) —
U(M,(A))/Uy(My,(A)) and jy : Up(A)/CU(A) — Uo(My(A))/CU(My,(A)) be the homomor-
phisms induced by the map u +— diag(u, 1,—1). Suppose that A has stable rank one. Then,
by Theorem 2.9 of of [22] and by Corollary 3.11 of [8], the maps j, and jy are isomorphism.
Moreover Ki(A) = U(A)/Uy(A). Note that [ oj = j. o []% . It follows that j is injective. Let
u € U(M,(A)). There is ug € U(A) such that u - diag(uf, 1,—1) € Up(M,(A)). It follows that
w - diag(ug, 1n—1) € Ug(M,,(A))/CU(M,(A)). By Corollary 3.11 of [8], there is vg € Uy(A) such
that - diag(ug, 1,—1) = diag(vo, 1,—1). Thus @ = diag(uovg, 1n—1). In other words, the map
z — diag(z,1,-1) from U(A)/CU(A) to U(M,(A))/CU(M,(A)) is an isomorphism.
Definition 2.7. Let A and B be unital C*-algebras with T(A) # @ and T(B) # 0. Let o : A — B
be a unital homomorphism. Denote by KK (yp) and KL(p) the elements in KK (A, B) and
KL(A, B) induced by ¢, respectively. We also use [p] for K L(p) whenever it is convenient.

Note that ¢y maps pa(Ko(A)) to pp(Ko(B)) and ¢ maps CU(A) into CU(B). Denote by ¢* :
U(A)/CU(A) — U(B)/CU(B) the induced continuous homomorphism. Then (K L(p), o1, ¢*)
is compatible.

2.8. Let A and B be unital C*-algebras such that T'(B) # . Let ¢,1 : A — B be two unital
homomorphisms such that 70 ¢ =701 for all 7 € T(B). Consider the mapping torus

M, = {(bya) € C([0,1],B) ® A : b(0) = p(a) and b(1) =(a)}.

Let u = (u(t),a) € Up(My(Myp)) (u(0) = ¢(a),u(1) = 1(a)) such that u(t) is piecewise smooth.
Then u = exp(ih1) exp(ihs) - - - exp(ihy,), where h; € My (Mg 4))s.q.- Moreover, one may choose
hj(t) (t € [0,1]) sothat h;(t) is piecewise smooth. One then computes that, for each 7 € T'(B)
(since T o p = T0 V),

1Y du(t)

Rop®)r) = 5o [ (Do) (25)
1 PSS dhy(t
= il ;T( dt())dt (2.6)
= o S lhs(0) — 7y (1) = 0. (e27)
j=1

As in 3.2 and 3.3 of [15], R,y : K1(My ) — Aff(T(B)) is a homomorphism. In fact, we have
the following commutative diagram:
Ko(B)  —  Ki(Mgy)

v SRy, - (e2.8)
AH(T(B))
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Definition 2.9. Let k € KL.(A,B)™ and xr : T(B) — T(A) be a continuous affine map
such that (k, k7) is a compatible pair. Let Hom, ,..(U(A)/CU(A),U(B)/CU(B)) be the set of
homomorphisms v : U(A)/CU(A) — U(B)/CU(B) such that (k,kr,7) is compatible.

Fix g € Homy, ... (U(A)/CU(A),U(B)/CU(B)). Then, for any

B € Homy, ... (U(A)/CU(A),U(B)/CU(B)),

g — B gives a homomorphism in Hom(U(A4)/CU(A),U(B)/CU(B)) which maps U(A)/CU(A)
to Aff(T'(B))/pp(Ko(B)) and vanishes on Aff(T(A))/pa(Ko(A)). Thus
(

{9 —B: 8 € Homy ., (U(A)/CU(A),U(B)/CU(B))} = Hom(K1(A), Aff(T(A))/pa(Ko(A))),

Let I'Y be the bijection f +— g — 8 (8 € Homy . (U(A)/CU(A),U(B)/CU(B)) which gives a
group structure on Homy, .. (U(A)/CU(A),U(B)/CU(B)). Note that the group is independent
of the choice of g. In this way, we may view

Hot, ., (U(4)/CU(A), U(B)/CU(B))

as an abelian group. Denote by Homg; (K1 (A), Aff(T(B))/pp(Ko(B))) the subgroup of homo-
morphisms A in Hom(K7(A), Aff(T(B))/pp(Ko(B))) such that there is a sequence of homomor-
phisms h,, € Hom(K7(A), Aff(T(B))) such that 7 o h,|g, = hlg., where G,, C G11 C K1(A)
is a finitely generated subgroup and K;(A) = U2 ,G,,.

Let Homy, so;..app(A, B) be the set of approximately unitary equivalence classes of homomor-
phisms ¢ from A to B such that (K L(y), 1) = (k, k1) Let Homg ¢ (K1 (A),Rpp(Ko(B))/pp(Ko(B)))
be the subgroup of homomorphisms & in Hom,; ¢ (K1(A); Aff(T(B))/ps(Ko(B))) such that h(K1(A)) C
Rpg(Ko(B))/ps(Ko(B)). It is also a subgroup of those h’s in Hom (K1 (A), Rpg(Ko(B))/ps(Ko(B)))
such that there is a sequence of homomorphisms h, € Hom(K;(A),Rpp(Ko(B))) such that
7 ohnlg, = hla,, where G,, C Gpy1 C Ki(A) is a finitely generated subgroup and K;(A) =
U, Gy.

n

Definition 2.10 (Definition 9.2 of [6]). Let A be a unital simple C*-algebra. We say A has
generalized tracial rank at most one (gTR(A) < 1), if the following property holds: Let £ > 0,
let a € Ay \ {0} and let F C A be a finite set. There exist an non-zero projection p € A and a
unital C*-subalgebra C"which is a subhomogeneous C*-algebra whose spectrum has dimension
at most one and with 1¢ = p such that

(1) |lzp — pz|| <efor all x € F,
(2) dist(pzp,C) < € for all x € F, and
(3)1=-pZa

By Theorem 4.10 of [3], every unital finite separable simple C*-algebra with finite nuclear
dimension which satisfies the UCT has the property that gTR(A ® U) < 1 (see also Theorem
3.4 of [20]) for every infinite dimensional UHF-algebra U.

Now let A be a unital finite separable simple amenable C*-algebra which satisfies the UCT
and U be a UHF-algebra of infinite type (so U = U ® U). By [1], A ® U has finite nuclear
dimension. From the previous paragraph, ¢gTR(A®@ U) = gTR((A®U)® U) < 1. This fact will
be repeatedly used throughout the paper.

Definition 2.11. Throughout the paper, @ is the UHF-algebra such that (Ko(Q), Ko(Q)+, [1g]) =
(Q,Q4,1). Let ¢ be a supernatural number but not a natural number. Denote by M, the UHF-
algebra associated with t.



Let p and q be a pair of relatively prime supernatural numbers of infinite type such that
My, ® My = Q. Let jp : My — @Q be defined by jy(a) = a ® 1y, and jq : My — Q be defined by
Jq(b) = b ® 1py,. Define

Zpq=1{(f,a,b) : (f,a,b) € C([0,1],Q) & (M, ® My) : f(0) = jp(a), f(1) = jq(b)}. (e2.9)

Definition 2.12. Let A be a unital separable amenable C*-algebra and let x € A. Suppose
that ||zz* —1]] < 1 and ||z*z —1|| < 1. This “approximate unitary” is close to a unitary. In fact,
z|z|~! is a unitary. Let us use (x) to denote x|x|~.

Let A and B be unital C*-algebras and let ¢ : A — B be a homomorphism and v €
U(B). We refer to 2.14 of [6] for the definition of locally defined bottg (g, v), botti (¢, v) and
Bott(p, v) when ¢ and v almost commute. We also refer to 2.12 and 2.14 of [6] for other related
terminologies.

3 Homotopy Lemmas, restated

Lemma 3.1 (Lemma 25.4 of [7]). Let A= A; ® Uy, where gTR(A;1) <1 and satisfies the UCT
and Uy is a UHF-algebra of infinite type. For any 1 > & > 0 and any. finite subset F C A, there
exist § > 0, 0 > 0, a finite subset G C A, a finite subset {p1,p2, .., Pkyq1,q2, ---, qk } of projections
of A such that Q :={[p1] — [¢1], [p2] — [q2]; ---, [Pk] — [ax]} generates a free abelian subgroup G, of
Ky(A), and a finite subset P C K(A), satisfying the following condition.:

Let B = By ® Uy, where gTR(B1) < 1 and Uy is a UHF-algebra of infinite type. Suppose
that ¢ : A — B is a unital homomorphism.

If u e U(B) is a unitary such that

I[e(x), u]]| <0 for all z € G, (
Bott (g, u)lp =0, (
dist ((((1 = @ (pi)) + p(pi)u)(1 — p(q:)) + ¢(g:)u*)), 1) < o, and (e3.3
dist(ﬂ, I) < o, (

then there exists a continuous path of unitaries {u(t) : t € [0,1]} C U(B) such that

u(0) =u, u(l)=1p, (e3.5)
dist(u(t), CU(B)) < e for all t € [0,1], (€3.6)
lle(a), u(®)]|| <e for all a € F and for all t € [0,1], and (€3.7)
length({u(t)}) < 27w +«. (€3.8)

Remark 3.2. The original statement of 25.4 of [7] assumes A; € By. However, since U; ® Uy =
Ui, we may assume A; = A; ® Uy. If gTR(A;) < 1, by 19.2 of [6], 41 ® Q € By. Then, by
Theorem 3.4 of [20] (see also Theorem 3.20 of [6]), A1 ® Uy € By. Thus it suffices to assume that
gTR(A;) <1 as well as gT'R(B) < 1. Also B does not need to assumed to satisfy the UCT.

Let us also comment that the condition (e3.4) may be dropped (if we choose sufficiently
large set {p1,p2, ..., Pk, q1, G2, ---, qr } and sufficiently small o). To see this, one notes that one can
always assume [14] + 2 € G, for some z € Ky(A) with ma = 0 for some integer m > 1. Thus
m[la] € Gy. Suppose that m[l4] = Z§:1 m;([pj] — [g;]) for some integers m;, j = 1,2,..., k.
Once this is done, let K = (Z§:1 |m;|). For any 1 > ¢ > 0, choose 0 = ¢/K. Then, one checks
that the condition (e 3.3) implies that dist(u™,1) < Ko.

We claim that dist(w, 1) < ¢/m. In fact, there exists a unitary w, € CU(A) and w € U(A)
such that uw.w = 1 and |jw — 1| < Ko = ¢ < 1. Therefore w = exp(ima) with a € Ag,.



and |la|| < &/m. Write w, = H’,zil exp(iby) for some by € Ms,., k = 1,2, ..., ka. Define w.o =
Hiil exp(iby/m) and wy = exp(ia/m). Then (uw.owo)™ = 1 € CU(A). By Corollary 11.7 of
[6], U(A)/CU(A) is torsion free. It follows that uw.owp € CU(A) and w.o € CU(A). Hence

dist(u, 1) < |lwo — 1]] < &/m. (e3.9)

Lemma 3.3 (cf. Lemma 24.5 of [7]). Let A = A; ® U1, where Ay is as in Theorem 14.10 of [6]
and B = By ® Us, where is a unital simple C*-algebra with gTR(B1) <1 and where Uy, Us are
two UHF-algebras of infinite type. Let A = limy,_00(Ch, ) be as described in Theorem 14.10
of [6], For any € > 0, any o > 0, any finite subset F C A, any finite subset P C K(A), and
any projections p1,p2, ..., Pk, q1,q2, -, @k € A such that {xi,z9,...,x} generates a free abelian
subgroup G of Ko(A), where x; = [p;] — [¢i], i = 1,2, ..., k, there ezists an integer n > 1 such that
zi € P C [tnoo(K(Cr)) (1 < i < k) and there is a finite subset Q C K1(Cy) which generates
K1(Cy) and there exists 6 > 0 satisfying the following condition: Let ¢ : A'— B be a unital
homomorphism, letT' : G — U(B)/CU(B) be a homomorphism and let o € KK(C,, @ C(T), B)
such that

o(B(9)) = T (T ((1mn0)e0()) for all g € 175(G) (see'(€2.4) and  (e3.10)
|70 pp(a(B(x)))| <0 for all x € Q and for all 7€ T(B). (e3.11)

Then there exists a unitary u € B such that
p(z), u]|| <& for all x € F, Bott(go [, 1) = a(B),
and, fori=1,2,.. k,
dist((((1 — ¢(ps)) + (pi)u) (1 — (a:) + (gi)u*)), T'(2:)) < 0. (e3.12)

Proof. As in 3.2, we may assume that By € By. The lemma follows from Lemma 24.2 and
Theorem 22.17 of [7]. In fact, for any 0 < g1 < £/2 and finite subset F; D F, by Lemma 24.2,
there exists an integer n > 1, a finite subset Q@ C K;(C,), and § > 0 as described above, and a
unitary u; € Up(B), such that

le(x), ui]|| < e1 for all x € Fy

and
BOtt(QO O n,c0; ul) = Oé(,@)|7)

Choosing a smaller 1 and a larger Fi, if necessary, we may assume that the class

(L= @(pi) + (pi)u)((1 = ¢(q:) + ¢(gi)ui)) € U(B)/CU(B)
is well defined for all 1 <i < k. Define a map I'y : G — Uy(B)/CU(B) by

Pi(zi) = (1= o(p) + opi)u) (1 = o(@)) + e(@)uy)), i=1,2,...k. (€3.13)

Choosing a large enough n, without loss of generality, we may assume that there are projections
PPy ooy s 15 @25 -5 @ € Cr such that 1y, o0 (p)) = pi and 4, 00 (q)) = @i, @ = 1,2, ..., k. Moreover,
we may assume that Fi C 1,00(Cp). Let I'o(x;) = T'i(z)*T'(24), ¢ = 1,2,..., k. By (e3.10),
To(zi) € Up(B)/CU(B). Hence I'y defines a map from G to Uy(B)/CU(B). It follows by
Theorem 22.17 of [7] that is a unitary v € Uy(B) such that

ll[e(x), v]|| <e/2 for all z € F, (e3.14)
Bott(¢ 0 ty,00,v) =0, and (e3.15)
dist ((((1 = (pi)) + ¢(pi)0) (1 = ¢(¢:)) + ¢(qi)v*)), Ta(xi)) < o, (e3.16)



i=1,2,....k. Define u = ujv,

Xi = (0 =9@) + elpi)u) (1 = ¢(a:) + ¢(gi)ui)), and (e3.17)
Vi = (1 =) +e@)v)((1 = olag) + (g:)v)), (e3.18)

i =1,2,..., k. We then compute that

llo(x), u]|| <e1+e/2<e for all z € F, (3.19)
Bott(¢ 0 2,00, u) = Bott(p 0 4,00, u1) = @(B), and
dist ((((1 = (pi)) + (pi)u) (1 = ¢(a:)) + (gi)u*)), T(z:))

< dist(X;Y5, Ty (24)Y5) + dist (T (24) Y5, T'())

= dist(X;, ['1(x;)) + dist(Y;, Ta(x;)) < 0+ o, (by (e3.16)),

fori=1,2,... k. O

Remark 3.4. Lemma also holds if p;, g; € My (A) for some given integer IN. Then (e 3.12) may
be written as

dist({((1xv = (pi) + ¢(pi) (u © In))((1 = ¢(¢:) + ¢(@) (v @ 1x))), '(z:)) < o.  (e3.20)

But in (€3.20), ¢(p;) := (¢ ® idmy ) (pi), @ = 1,2,.... Note also ¢(p;) approximately commutes
with ©® 1 within in any previously prescribed small number, say 7. By Theorem 4.6 of [8] (see
also Lemma 11.9 of [6]), there is z; € U(B) such that

diag(zi, 1v—1) = ((Iv — @(pi)) + e(pi)(u @ 1n))((1 = ¢(q:) + ¢(gi) (u* ® 1n))).
In fact, by (€3.12), we mean
dist(z;, T'(z;)) < o. (e3.21)
By Theorem 4.6 of [8], % is unique;

To see that we can allow p;,q; € Mn(A), suppose that Uy = M, and Uy = M,, where p
and q are supernatural numbers of infinite type. We identify Ky(M,) with the dense subgroup
D, of Q given by the supernatural number t. Choose N; > N such that Nil € Dy. There are
mutually orthogonal and mutually unitarily equivalent projections p;1,...,pin; € A ® Uy such
that p; = Z;V:ll Pi,j» and mutually orthogonal and mutually unitarily equivalent projections
gi1s--qi,N, € A® Uy such that ¢; = Z;V:ll gij, © = 1,2,...,N1. Put x; = [pig] — [Qi,ﬂ, 1 =
1,2,..., k. Let G be generated by {z/,z2,...,z} }. Then Gy is also a free abelian group.

Let Py = P U Gp. Choose larger n so that P; C [tn,00](K(Cy)). If T is given and fits
a as (€8.10). Choose y1,¥2,...,yx € Ko(Cy) such that [jnool(yi) = 25, ¢ = 1,2,..., k. Let
z = aoB(y;). Then [[5 (T(zi)sp(2:) M) = 0 in K (B) (see (e2.2) for sg). It follows that f; :=
I'(2:)sp(z)™™ € Uy(B)/CU(B). Recall Uy(B)/CU(B) = Aff(T(B))/pp(Ko(B)) is divisible.
Define I'y : Go — U(B)/CU(B) by

To(a) = (1/N1)fi)sp(z), i=1,2, ...k (€3.22)

Then T'y(z;) = Nilg(a}) = T'(2;), ¢ = 1,2, ..., k. Then we apply current Lemma 3.3. We apply
this for Gy instead of G, 'y instead of I' and /2N instead of 0. We will have, among other
things,

dist ((((1 — @(p})) + ¢ (P))u @ In((1 — () + w(g))u* @ 1n), To(z})) < 0/2N1,  (e3.23)
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i=1,2,.... k. We also assume that o(p})u ~,/sn,)2 up(p;). One has

(T =) + e lu((1 — (@) + plg)ury (c3.24)
— [y —20) + e (e I (1 — p(@) + pl@) @ @ 1n)).  (e3.25)
It follows that, for i = 1,2, ..., k,

dist(((1n — (p:)) + @(pi)(u @ In))(1 = @(q:) + ¢(g:) (u* @ 1§))), () < 0.

Remark 3.5. Let A; be a separable amenable simple C*-algebra which satisfies the UCT.
Then A; ® Uy is Z-stable for any UHF-algebra U;. If U; is a UHF-algebra of infinite type,
then A = (A; ® U) ® U;. By the classification theorem (see Corollary 29.10 and also Remark
29.11 of [7]) and Theorem 4.10 of [3], A; ® Uy can be written as A1 ® Uy = lim;,—,00(Ch, ty) as
described by 14.10 of [6], namely, C,, is a direct sum of a homogeneous C*-algebra in H and
a unital 1-dimensional NCCW complex (see notation in Section 14 of [6]). It follows that the
assumption that A; is an inductive limit of the form in 14.10 of [6] can be replaced by A; is a
separable finite amenable simple C*-algebra satisfying the UCT.

The following is a slight improvement of Lemma 6.6 of [18] for the current purposes.

Lemma 3.6 (cf. Lemma 6.6 of [18]). Let C' and A be two unital separable stably finite C*-
algebras and let p,q be two relatively prime supernatural numbers of infinite type such that
Q = M, ® M. Suppose that ¢, : C ® My — A ® M, are unital homomorphisms such that

[pp ®idny,] = [¢q ®idag,] in KL(C® Q,A® Q) _and (pp @idpy, )y = (pq @ idpg, )z, (e3.26)

t = p,q. Suppose that {U(t) : t € [0,1)} is a continuous and piecewise smooth path of unitaries
in A® Q such that U(0) =1 and

}gl} U*(t)(p @idag, ) (u@ 1Q))U(t) = ¢q ® idag, ) (u ® 1) (€3.27)

for some u € U(C), and suppose {Z(t,s)}s is a continuous and piecewise smooth (piecewise
smooth with respect to s) path of unitaries in A® Z, 4 (that is for each fixed s € [0,1], Z(—,s) €
A® 2,4) such that Z(t,1) = 1-and

Z(t,0) = U*(t)(pp @idpg, ) (u® 1p,))U () (w* @ 1g) if t €[0,1)

and Z(1,0) = (¢q @ idag, )(uw)(w* @ 1) for some w € U(A). Suppose also that there exist h €
Aff(T(A® Zp4)), fo € paom, (Ko(A® My)) and f1 € pagum, (Ko(A @ My)) such that

Det(Z)(1 ® 0;) = h(7) + fi(1) for all Te T(A®Q), j=0,1, (€3.28)
where 0y is the extremal tracial state of 2,4 which factors through the point-evaluation at t €
[0,1].

Suppose also that there is a continuous and piecewise smooth path of unitaries {z(s) : s €
[0,1]} in A® My ® 1y, such that 2(0) = ((¢p @ iday, ) (u ® 1g)(w* ® 1g), 2(1) =1, and
fo € pasm, (Ko(A @ My)), and
1 [tod

1)

2mi Jo ds

2(s)*)ds = h(T) + fo(T) for all T € T(A® Q). (e3.29)

Then, there is f € pagz, ,(Ko(A® 2p4)) such that
1 [ 4z
2mi Jo ds

for allt € [0,1] and T € T'(A).

(t,5)")ds)(0r) = h(T) + f(T ® ) (€3.30)



Proof. Put ¢ := ¢y ®idp, and ¢ := ¢4 @ idyy, . Define

Ut —2s)p(u® 1g)U(t — 2s)(w* ® 1g)  for s €0,t/2)
Zi(t,s) = { p(u®1g)(w* ® 1g) for s € [t/2,1/2) (€3.31)
2(2s — 1) for s € [1/2,1]

for t € [0,1) and define

P(u® 1g)(w* @ 1q) for s=0
Z1(1,8) = CU*(1 = 28)p(u®1g)U(1 — 2s)(w* @ 1g) for s € (0,1/2) (€3.32)
z(2s — 1) for s € [1/2,1].

Thus {Zi(t,s) : s € [0,1]} € C([0,1],A ® Q) is a continuous path of unitaries such that
Z1(t,0) = Z(t) and Zi(t,1) = 1. This path may not be piecewise smooth (at s = 0). To
compute Det(Z;), we approximate it by a piecewise smooth path.

Let 1/2 > & > 0. Choose ¢ € (0,1/8) such that

U (t)p(u® 1g)U(t)(w" ® 1g) — Y (u® 1g)(w* ® 1g)|| <e/64 for all't € (1 —-46,1) (e3.33)
and ||[U*(t)p(u® 1g)U(t)(w* @ 1g) — U*(t)e(u @ 1g)U (") (w* @ 1g)|| < /64 (e3.34)

whenever [t—t'| < 20. There is H € (A®Q)s.q. such that U*(1—8)p(u @ 19)U(1-9)(w* @ 1) =
exp(iH)Y(u® 1g)(w* ® 1g) and ||H|| < €/16. Define W( ) =U*(t)p(u®1g)U(t)(w* ® 1q) if
t€0,1—6) and W(t) = (u® 1g)(w* ® 1g) exp(i(1L)H) if t € [1 — §,1]. Note that W (t) is
a continuous and piecewise smooth path of unitaries in A ® @ and it is a unitary in A ® 2, 4.
Moreover

sup{||W (£) — Z(t,0)| : t € [0,1]} < £/16. (¢3.35)

There is Hy € (A ® Zp q)s,0 such that Z(t,0) = W exp(iHy) with || Ho|| < €/16. In fact Ho(t) =0
if t €[0,1—6] and Ho(t) = —5LH if t € (1—6,1].

Define
W (t) exp(i(%5%) Ho(t))  for s € [0,4),
s—0

Z(t.s) = W(t = (173%5)) for s €[0,(1/2 =)t +0) (e3.36)
ou®1lg)(w* ®@1g) for s € [(1/2—-0)t+6,1/2)
z2(2s —1) for s € [1/2,1]

for t € [0,1) and define
wW(1) exp(i(%)Hg(l)) for s € [0, ]
Z:(1,8) = § W(L = (552%)) for s € (6,1/2) (e3.37)

2(2s —1) for s € [1/2,1].

Thus {Z:(t,s) : s € [0,1]} € C([0,1],A ® Q) is a continuous and piecewise smooth path of
unitaries such that Z.(¢,0) = Z(t) and Z.(t,1) = 1. Moreover

| Ze — Z1|| < ¢/8. (€3.38)

Thus, there is an element g € pagg(Ko(A® Q)) C Aff(T(A ® Q) such that

1 s 1 s
gr®8) = 212/ T(dzc(li’ )7, ))ds—% O T(dzﬁ’)zl(t,s)*ds (¢3.39)
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for all 7 € T(A) and for all ¢ € [0, 1], where ¢, is the extremal tracial state of C([0, 1], Q) factors

through the point-evaluation at .

On the other hand, let V() = U(t)*¢(u ® 1g)U(t) for t € [0,1) and V(1) = ¢(u ® 1¢). For

any s € [0,1), since U(0) = 1, {U(t) }o<i<s € Uo(C([0, 5], A®Q)). There there are a1, as, ...,

U(]0,s], A ® Q)s.q. such that

Hexp ia;(t)) for all t € [0, s].

ap €

Then a straightforward calculation (see Lemma 4.2 of [13]) shows that, for each ¢ € [0, 1),

v (t)
e

V*(t)) =0 for all 7€ T(A).

It follows that, for any a € [0, 1),

1 (% dv(t)

7(

— V*(t))dt =0 for all 7€ T(A).
omi Jy Ca VW) or all 7€ T(4)

Hence, for t € [0,1 —¢), W(t) = V(t)(v* ® 1g) and

1 0+(1/2-96)t dZE(t, 8)

% s T ds Zg(t, S) )dS
1 +(1/2-0)t d §—10 s—0
= (W (t = (——)))W*(t — d
2 J T<ds(W( Sy w2 (1/2—5))> °
1 6+(1/2-96)t d s —0 . s—&
== (0 GV () Jas =
If t € [1 —6,1], then, applying (e 3.41) again,
0+(1/2-96)t dZ-(t, s
y (25 7 1, 5)7)a
S+(1/2=8)(t—146)  po-+(1/2-5)t AZ.(t.s
-1 - 72 7 1, sy
5 5+(1/2-8)(t—1+9) S
5+(1/2-8)(t—1+0) ;
t—146
:‘fT(HH <e/16 for all T€e T(A® Q).
Also
1 (Y2 a4z,
|7 () 7.4, )
i

5+8(1/2-6) 1/2
g R T
2mi §5+6(1/2-5) ds

< %(|T(H0(1))’ + |7(H)| +0) < e/167 for all T € T(A).
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One then computes that, for any 7 € T'(A) and for any t € [0, 1), by applying (e 3.47),
1 (Y dZ.(t,s)

5 || T Zees) s (e3.50)

R
S () (i) + ﬁ/ﬂ);(dzﬁ’s’ze@, yis+ [ :27<d2<2;;”z<23 ~1y)ds)
_ %T(HO( 1) +0+ % /127 dz(255_1)2(23 _1)%)ds
_ %T(Ho(t)) + 2% /0 lT(dz(ss)z(s)*)ds ~jgan W(T) + fol(). (3.52)
It then follows from (e3.49) and (e 3.29) that

% 017 dZa@gi’S)Zg(l,s)*ds (3.53)
- %[ 01/27(‘12565;’5)25(1,5)*d8+/1/127(%2;%1)2(25—1)*)ds]
N 16m 2% 017 d’jlf)z(s)*)ds = h(7) + folT): (e3.54)

Note, if Z5(t, s) is any continuous and piecewise smooth of unitaries in C([0, 1], A ® Q) with
Zs(t,0) = Z1(t,0) and Zs(t,1) = Z1(t,1) =1 as well as

122 < Zi|| < e, (€3.55)

then ZyZ* is a trivial loop and Det(Z5)(7 ® 6;) = Det(Z:) (T & 0¢).
It follows that

i t7‘ dZQ(t,S)

, Zo(t,s)")ds = h(r) + fp(7) for all T € T(A® Q). (e3.56)
2wt Jo s

Thus, there is an element g € pagg(Ko(A® Q)) C Aff(T(A® @), such that

1 [todz(t,s) . 1 [Y dZs(t,s) .
( ®(5t) 271_2/ T(TZ(t,S) )dS—? . T(TZQ(t,S) dS (6357)

for all 7.€ T'(A) an for all ¢ € [0, 1]. Thus, for any ¢ € [0, 1],

dZts

— W / ) 2(t,5)*)ds = h(r) + fo(r) + g(r @ 3. (¢3.58)

Put f(7—®5t) = fp (T)+g(7—®5t) € pC([O,l],A@Q(KO(C([Oﬂ 1]7 A®Q))) Then, for fixed 7 € T(A®Q)7
f is contant on [0, 1]. By (e3.28),

fr®d;) = fi(r) forall TeT(A®Q), i =0,1. (e3.59)

Recall fo € pagn, (Ko(A®My) and f1 € pagm, (Ko(A®Mj)). It follows that f € pagz, ,(Ko(A®
Zp.q)- Lemma, follows.
O
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4 Approximate unitary equivalence

Lemma 4.1 (cf. Lemma 5.1 of [18]). Let Cy and A; be unital separable simple C*-algebras
and let C = Coy @ Uy and A = Ay ® Us, where Uy and Uy are UHF-algebras of infinite type.
Suppose that C' satisfies the UCT and gT R(A1) < 1. Suppose further that C' = limy, 00 (Ch, tp)
as describe 14.10 of [7]. If there are monomorphisms ¢, : C — A such that

[p] = ] in KL(C,A), ¢; =1, and @' =¢*,

then, for any 2 > e > 0, any finite subset F C C, any finite subset of unitaries P C U(C), there
ezist a finite subset G C K1(C) with P C G (where P is the image of P in K1(C)) and §-> 0
such that, for any map n: G(G) — Aff(T(A)) (where G(G) is the subgroup generated by G ) with

In(x)(T)] < d for all T € T(A) and n(x) — Ryp(x) € pa(Ko(A)) for all x € G, there is.a unitary
u € A such that

le(f) —w* v (fHul <e  for all f€F,
and
T(% log(( ® idaz, (2%)) (u @ 1az, ) (¢ @ idas, (7)) (v @ 11, ))) = T(n([2]))

for all x € P and for all T € T(A).

Proof. Without loss of generality, one may assume that any element in F has norm at most one.
Let € > 0. Choose 6 with € > 6 > 0 and a finite subset F C JFp C C satisfying the following:
For all z € P, 7(5% log(v(x*)w*ih(x)w) is well defined and

271

T(%m log (¢ (z")w*(x)w) = 7(botty (w;1(x))) for all 7€ T(B),

whenever w € U(B) and
lwip(f) = (HHwl| <0 for all fe Fo

(see the Exel formula in [9]), and for any unitaries 21,22 in any unital C*-algebra D, which
satisfy
[lz1—=1]| <0 and |[|z2 — 1| <4,

then

1 1 1
T(% log(z122)) = T(% log(z1)) + T(% log(z3)) for all 7€ T(D)

(see Lemma 6.1 of [12]).

Let ng > 1(in place of n), & > 0 (in the place of §) and G’ C K;(Cy,) (in the place of Q)
the constant and the finite subset with respect to C (in the place of A), Fy (in the place of F),
P (in the place of P), ¢ (in the place of ), and k =1, p1 =1, g1 = 0, and o = 1, required by
Lemma 3.3. Put § = §'/2.

Fix a decomposition (L, c0)x1(K1(Cnyg)) = ZF@®Tor((tng.00)+1(Chy)) (for some integer k > 0).
Let G” C U(C) (recall that, by Theorem 9.7 of [6], C' has stable rank one) be a finite subset
containing a representative for each generators of Z*. Without loss of generality, one may assume
that P C G”. By Theorem 12.11(a) of [6], the maps ¢ and ¢ are approximately unitary
equivalent. Hence, for any finite subset @ and any d7, there is a unitary v € A such that

le(f) = v (floll <1, VfeQ.
By choosing Q O Fj sufficiently large and d; < 6/2 sufficiently small, the map

7] > (5 log(* (20" (o), = € G
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induces a homomorphism 71 : (tng,00)«1 (K1(Chy)) — Aff(T(A)) (note that 11 (Tor((tng,00)+1 (EK1(Chy)))) =
{0}), and moreover, ||n:(x)| < ¢ for all x € G.

By Lemma 3.8 of [18], the image of 1 — Ry, is in p(Ko(A)). Since n(z) — Ryy(z) €
pa(Ko(A)) for all z € G, the image (7 — m1)((tng,00)+1 (K1(C"))) is also in pa(Ko(A)). Since
n — m factors through ZF, there is a homomorphism A : (t5g.00)51(K1(Chy)) — Ko(A) (which
maps Tor((tng,00)+1(K1(Cry))) to zero) such that n —m = pa o h. Note that |7(h(z))| < 20 = ¢’
for all 7 € T(A) and z € G.

By the universal multi-coefficient theorem (see [2]), there is

r € Homy (K(Cy, ® C(T)), K£(A)) such that o B|k,(c,,) =ho (1)
Applying Lemma 3.3, there is a unitary w such that

Ifw, p(HI <6/2, Vf € Fo,

and Bott(w, 1 o) = k. In particular, botty (w,¥)(x) = h(zx) for all x € P.
Set u = wv. One then has

le(f) = u™b(full <6, Vf e Fo,

and for any x € P and any 7 € T(A),

(5 log(p(a)u" (z)u)

- T(%log(go(x)v*w*w@)wv))

= T(i.10g(30(33*)v*w(w)vv%(ﬂf*)w*ww)wv)

271
= (g Tor(p(a e Yi(a)v) + 75 lom (b (a Jur(ww)
= (D @)+l () = ) ().
O

The proof of the following lemma is long and is taken from the proof of Lemma 5.6 of [18].
The only modification has been outlined in Remark 5.7 of [18]. Since the statements in section
3 are slightly different from what were used in the proof of Lemma 5.6 of [18], we provide a full
proof for the convenience of the reader.

Lemma 4.2 (cf. Lemma 5.6 of [18]). Let A be a unital finite separable simple amenable C*-
algebra which satisfies the UCT, and let B be a separable simple C*-algebra. Suppose that
gTR(A®Q) <1 and gTR(B® Q) < 1.

Suppose that there are two unital monomorphisms ¢, : A — B with

[p] = [¢] in KL(A,B), ¢; =1y and o = ™.

Let p and q be a pair of relatively prime supernatural numbers of infinite type with My, @ Mg, = Q.
Then, for any finite subset F C A® Z, 4, there exists a unitray u € B ® 2, 4 such that

[(p®1z, )(x) —u" (Y @1z, )(@))ul <e for all z € F.
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Proof. Let t be a supernatural number. Denote by 12, : A =& A ® M, the embedding defined by
w(a) =a®1 for all @ € A. Denote by j, : B — B ® M, the embedding defined by j.(b) =b® 1
for all b € B. Without loss of generality, one may assume that

F=F@Fh={zy:xcF,yc Fi},

where 71 C A and F3 C Z 4 are finite subsets and 14 € F; and 1z, , € F2. Moreover, one may
assume that any element in F; or F> has norm at most one.

We will also write D, = Ky(M,) which is identified with a dense subgroup of Q.

Let 0 =ty <ty < -+ <tm =1 be a partition of [0, 1] such that

Hb(t) - b(tz)H < 6/4, Vb e Fa, Vt € [ti_l,ti], 1=1,...,m. (64.1)
Consider

E = {a®b(ty); ace F1,be Fo,i=0,....m} CA®Q,
& = {a®b(ty); ae Fi,be Fo} CA® M, C A®Q and (e4.2)
& = {a®b(ty); ac Fi,be R} CARM; C A®Q. (e4.3)

By [20], gTR(A® M,) < 1 for any (infinite) supernatural number t. By Theorem 21.9 of [7],
we may write A® Q = lim,,—,0(Ch, Jy,) as described in Theorem 14.10 of [6]. In particular, each
C), is isomorphic to a direct sum of a homogeneous C*-algebra in H and an Elliott-Thomsen
algebra with trivial K;-group, and J,, is unital and injective.

Let H C A® Q (in place of G), P C K(A® Q), @ = {x1,22,...,xm} C Ko(A® Q) which
generates a free abelian subgroup of Ky(A ® @), where we may assume that x; = [p;] — [¢;] and
i, ¢ € A® Q are projections, 6 > 0 and v > 0.be the constants of Theorem 3.1 and Remark
3.2 (so condition (e 3.4) is not needed in Lemma 3.1) with respect to £ (in place of F) and /8
(in place of €). We may assume Q C Pand 4 < /4.

Let G . C Ko(A® Q) be the subgroup generated by Q.

u,00 =

Note that we may assume that P C [Jy 0] (K(Ch,)) for some ng and
5,6 CH. (ed.4)

Denote by oo the supernatural number associated with Q. Let P, = PN K;(A®Q), i =0, 1.
There is a finitely generated free subgroup G(P);o C K;(A) such that if one sets

G(P)icoo = G{gr : g € (100)+i(G(P)ip) and r € Dy}), (e4.5)

where Dy C Q (1 € Dy) is a finite subset, then G(P); 0 contains the subgroup generated by
Pi, i = 0, 1. Moreover, we may assume that, if r = k/m, where k and m are nonzero integers,
and r € Dy, then 1/m € Dy. Let P! C K;(A) be a finite subset which generates G(P); 0,7 =0, 1.
Also denote by P’ = P} U P;.

Write the subgroup generated by the image of Q in Ko(A®Q) as Z* (for some integer k& > 1).
Choose {z),...,z}.} € Ko(A) and {r;j; 1 <i<m,1 < j <k} C Q such that

k
T; = Z?“ij(joo)*o(x;), 1<i<m, 1<j <k,
j=1

and moreover, {z],..., 2]} generates a free abelian subgroup G, of Ky(A) of rank k. Choose
projections p’,q; € Mn(A) (for some integer N > 1) such that 2 = [pj] —[¢}], 1 < j < k.
Choose an integer M such that Mr;; are integers for 1 <4 < m and 1 < j < k. In particular
M; is the linear combination of (joo)«o(2;) With integer coefficients.

15



Let p; be an orthogonal direct sum of Mr; ; copies of joo(p) in My, (A® Q) for some integer
Ny > 1. One can find M mutually orthogonal and mutually equivalent projections ey ;,...,enr;
such that Zf\i 1 €1, = P;. Since p; € A® @, by replacing p;- by a unitarily equivalent projection,
we may assume that e;; = p;. In other words, we make the arrangement so that p; is the direct
sum of M copies of p;.

Also noting that the subgroup of Ky(A ® @) generated by

{(200)+0(21), s (100)w0 () }

is isomorphic to Z* and the subgroup of Ko(A ® M,) generated by

{(2)w0 (1), s ()0 () }

has to be isomorphic to Z*, where t = p, q. We assume that 2 € Ph, j=1,2,.., k.

Since gTR(A ® M,) < 1, by Theorem 21.9 of [6], one may write A ® M, = lim;,_,(CY,, J})
as described in 14.10 of [6]. In particular, each Jj; : Cf, — Cj ,; is a unital embedding. We may
assume that, for sufficiently large n., & C Ju ,oo(C;L; ) and there are projections

{plll,m “'7p;c/,t7 qi/,t’ ) qllc/,t} - MN(C;; )

/
T

such that for any 1 < j <k, with p} . = J7, (p},) and q; = J}, _(q],),

Ny, 00
P @ Las, — Plll < v/2N(64(1+ ) |Mrip))) < 1 (0 4.6)
i’j/
and
g5 © Tar, — gl < 7/2N(64(1+ D [Mryp])) <1, (c4.7)
ij

andt=port=yq.

Denote by 2, = [p} ] —[g;.| and @ . = [p] ]—-[q} ], 1 < j <k, and denote by G the subgroup
of Ko(C7,) generated by {27 ¢y}, and write Gy = Z" @ Tor(G). Since G is generated by
k elements, one has that r < k and r = k if and only if G, is torsion free. Note that the image of
G, in Ko(A ® M) is the group generated by {[p] ® 1ar] — [¢f ® 1ar], --.s [P} @ 1as] — [¢f © 1ar.]},
which is isomorphic to Z* {[p} ® 1a] = [¢} ® 1ar]; 1 < j < k} as the standard generators).
Hence G, is torsion free and r» = k.

Without loss of generality, one may assume that 1(P') C [J;, J(K(C},)).

Assume that H is sufficiently large and ¢ is sufficiently small such that for any homomorphism
h from A® @ to B® (@ and any unitary z; (j = 1,2,3,4), if ||[a(x), zj]|| < 0 for any x € H, then
the map Bott(h, z;) and Bott(h,w;) are well defined on the subgroup generated by P and

Bott(h, w;) = Bott(h, 21) + - - - + Bott(h, z;)

on the subgroup generated by P, where w; = z1---25, 7 = 1,2,3,4.
By choosing larger H and smaller é, one may also assume that

|\h(pi), 2]l <1/16 and ||h(g;), ]|l <1/16, 1 <i<m,j=1,2,3,4, (e4.8)
and, for any 1 <7 <m,
k
dist (7, . ] [ (¢ )M < 7/64N, (e4.9)
j=1
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where (with 1 := 14g0)

Gize = (1 = h(pi) + h(pi)z1) (1 — h(@:) + h(q:))27)),
51',21 = <(1 - h(pi> + h(pi)zl)(l - h(qi) + h(qz)zi‘) &) 1N—1>7 (e 4.10)

and (with 1 := 1(4gq))

N N)*
Gar = Ay = h(¥h ® LasQ) +h(p} ® Lage)xt V(1w — hig; ® Lase) + hig) ® Lasg)z ),
where z%N) =21 ®1yN.
By choosing even smaller §, without loss of generality, we may assume that

H=H" @H @HI,

where H" C A, H? C M, and H% C M, are finite subsets, and 1 € H°, 1 € HP and 1 € H".

Moreover, choose H?, HP and H9 even larger and § even smaller so that for any homo-
morphism h, : A ® M, — B ® M, and unitaries 21,20 € B ® M, with ||h¢(z), 2| < § for any
r € Ho ® H., one has

[he(Pe), 2illl < 1/16 and [|he(q;,), 2] < 1/16, 1 <i<k,j=1,2, (e4.11)
and
dist(Gi 2200 (1Boar ) ) < dist(Gizps Givz) + 7/ (GAN (14D [ Mryg)), (e4.12)
i'j
where
Gt = (AN — he(Pf ) + PP} )2 ) (AN — he(q] ) + helqi ) (2')*))s
and

Z =2z ®@1N,2] @ 1N, 22 @ 1.

Let n (we assume n > ng), 2 (in the place of §) the constant, G C K;(Cy,) (in the place of
Q) the finite subset in Theorem 3.3 with respect to A ® @ (in the place of A), B ® @ (in the
place of A), ¢ ® idg (in the place of h), §/4 (in the place of €), H (in the place of F), P and
[100](G9) (in place of G). Without loss of generality, we may write that n = ny.

Let H C A® Q be a finite subset and assume that dy is small enough such that for any
homomorphism £k from A ® @ to B ® @Q and any unitary z; (j = 1,2,3,4), the map Bott(h, 2;)
and Bott(h, wj) is well defined on the subgroup [Jy, o] (K(Ch,)) and

Bott(h,w;) = Bott(h, z1) + - - - + Bott(h, z;)

on the subgroup [Jyy,00] (I (Cry)), if [|[A(x), 25]|| < 2 for any = € H’', where w; = 2 - zj,
7 =1,2,3,4. Furthermore, as above, one may assume, without loss of generality, that

H =H" @ H” @ HT,

where HO CHY c A, HP C H¥ € Mgy and HI C HY M, are finite subsets.

Let 65 > 0 be a constant such that for any unitary with ||u—1|| < &%, one has that || logul|| <
d2/4. Without loss of generality, one may assume that ¢, < d2/16 < /16 and 65 < 6.

Let n. € N (in place of n), R. C K1(C},)) (in the place of Q) and 4. (in the place of J) be the
finite subset and constant of Theorem 3.3 with respect to A® M, (in the place of A), B® M, (in
the place of B), ¢ ®idyy, (in the place of h), HY @ H¥ (in place of F) and (2)x0(Ph) U (2c)s1(P})
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(in the place of P) and d5/8 (in place of €), [.](GY,) (in place of G), and pj,q;, (in place of

pj,q;—see also Remark 3.4), v =p or v = q. Let REZ) = (te)wi(Jne,00 (K (CF))), @ = 0,1. There
is a finitely generated subgroup G; . C K;(A) and a finitely generated subgroup Dy, C D, so
that

Gioe:=G{gr: g€ (1)«(Gior) and r € Do.})

contains the subgroup Rgi), i = 0,1. Without loss of generality, one may assume that Dy, =
mip; ke Z} and Dyg = {miq, k € Z} for an integer my divides p and an integer mq divides q,
and n; = n,. It follows that

[)(z) € [u](Py) € R, j=1,2,..,k. (c4.13)

In what follows, we also use pg and g for ¢ ® idg and ¢ ® idg, respectively. Moreover, if
t is a supernatural number, we also use ¢, and 1, for ¢ ® idys, and ¢ ® idyy,, respectively. Let
R C K(A® Q) be a finite subset which generates a subgroup containing

1
mpMmy

((2p,00)+(G,0p U G1,0,p) U (19,00)+(G,0,4 Y G0,6))

in K(A® Q), where 1 o is the canonical embedding A ® M, - A® Q, v = p,q. Without loss
of generality, we may also assume that R O (Jyg,00)#1(G)-

Let H. C A® M, be a finite subset and 3 > 0 such that for any homomorphism h from
A® M, to B® M, (vt =p or v = q) any unitary z; (j = 1,2,3,4), the map Bott(h, z;) and
Bott(h,w;) are well defined on the subgroup [J;_ (K (C},)) and

Bott(h, w;) = Bott(h, z1) + - - - + Bott(h, z;)

on the subgroup generated by [J5, J(K(C}.)), if [[[h(7), 2] < &3 for any x € H,, where
wj = 21---25, j = 1,2,3,4. Without loss of generality, we assume that HO @ HP C H, and
H° ® H9 C H,y. Furthermore, we may also assume that

He =Hoo @ Hor (e4.14)

for some finite subsets Ho o and Ho, with HY Hoo C A, HY Ho,p C My and HY C Ho,q-
In addition, we may also assume that d3 < d2/2.

Furthermore, one may assume that §3 is sufficiently small such that, for any unitaries 21, 2o, 23
in a C*-algebra with tracial states, 7(5= log(ziz})) (i,j = 1,2,3) is well defined and

271

1 . 1 . 1 )
T(% log(z125)) = T(% log(z123)) + T(% log(z323))

for any tracial state 7, whenever |21 — z3|| < d3 and ||z2 — z3|| < d3.
To simplify notation, we also assume that, for any unitary z;, (j = 1,2,3,4) the map
Bott(h, z;) and Bott(h,w;) are well defined on the subgroup generated by R and

Bott(h,w;) = Bott(h, z1) + - - - + Bott(h, z;)

on the subgroup generated by R, if ||[h(x), zj]|| < 63 for any = € H”, where w; = 2z - zj,
7=1,2,....4, and assume that

H' = Ho,o @ Hop @ ’Ho,q.
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Let R® = RN K;(A® Q). There is a finitely generated subgroup Gj o of K;(A) and there is
a finite subset Dj, C Q such that

Gioo = G({gr : g € (100)+i(Gip)) and 7 € Dy})

contains the subgroup generated by R’, i = 0,1. Without loss of generality, we may assume
that G~ is the subgroup generated by R’. Note that we may also assume that G;9 D G(P); 0
and 1 € D{; D Dy. Moreover, we may assume that, if » = k/m, where m, k are relatively prime
non-zero integers, and r € D, then 1/m € Dj. We may also assume that G;o. C G, for
t=p,gand i=0,1. Let RY C K;(A) be a finite subset which generates G; o, i = 0,1. Choose a
finite subset U C Uy, (A) for some n; such that for any element of RY, there is a representative
in Y. Let S be a finite subset of A such that if (z; ;) € U, then z; ; € S.

Denote by 64 and Q, C K;(A® M,) = K1(A) ® D, the constant and finite subset of Lemma
4.1 corresponding to & U H, ® 1 U 1(S) (in the place of F), ¢ (U) (in the place of P) and
ni%min{éé/&ég/ll} (in the place of €) (v = p or v = q). We may assume that Q. = {xr @ r :
x € Q and r € D!}, where Q' C K;(A) is a finite subset and D C Q, is also a finite subset.
Let K = max{[r| : 7 € Dy U D{}. Since [¢] = [¢] in KL(A,B), ¢ = 94 and ot = ot

by Lemma 3.5 of [18], R, (K1(A)) C pp(Ko(B)) C Aff(T(B)). Therefore, there is a map
n:G(Q) — pp(Ko(B)) C Aff(T(B)) such that

04
14+ K

=

(n — Ryu)([2]) € pp(Ko(B)) and |[n(z)]| < for all z € Q. (e4.15)
Consider the map ¢, = ¢ ®idyz, and ¢ = ¥ ® idyy, (v = p or v = q). Since 1 vanishes on

the torsion part of G(Q’), there is a homomorphism

M : G((1)1(Q) = pBom. (Ko(B ® M) C Aff(T(B ® M,))

such that

Me 0 (1)1 = 1. (e4.16)

Since ppem, (Ko(B ® M,)) = Rpp(Ko(B)) is divisible, one can extend 7, so it is defined on
K1(A4) ® Q. We will continue to use 7, for the extension. It follows from (e4.15) that n(2) —

Ry, 4. (2) € ppom, (Ko(B® M,)) and ||n:(2)|| < 64 for all z € Q.. By Lemma 4.1, there exists a
unitary u, € B ® M, such that

u@w®MMMWw—W®m%xmw;;mm%mﬁy@ (e4.17)

for all c.€ & UH, Uy(S), and

(o Tog(u (¢ ® idy) (=) () ® idy) (27))) = mp([])(7)

27

for all z € 2,(U), where we also use ¢ and 9 for ¢ ® idpr, and 9 ®idas,,, and up with u, ® 1ary,
respectively. Note that

[Jup (¢ @ idag, ) (2)up — (¥ @idag, ) (2)|| < 03 for any 2 € U.

The same argument shows that there is a unitary uq € B ® My such that

lut(p @ idar, )(c)ug — (1 @ idar,)(O)]] < nl%min{éé /8,65/4) (c4.18)
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for all ¢ € & U HqUr,(S), and (recall o = ¢ ® idpy, and ¢ = ¢ ® iday,)
1
7(5 7 1og(ug(pq) (2)uq(¥9)(27))) = 1q([2])(7)

for all z € 14(U), where we identify ¢ and ¢ with ¢ ®ida, and 9 ®idp,, and uq with uq ® 1y,
respectively. We will also identify w, with up ® 1y, and ug with ug ® 1y, respectively. Then
upu; € A® Q and one estimates that for any ¢ € Hoo ® Hop @ Hyg,

[uquy (pq(e))uyug — (pQ)(e)l < ds, (e4.19)

and hence Bott(¢q, upug)(2) is well defined on the subgroup generated by R. Moreover, for any
z € U, by the Exel formula (see [9]) and applying (e4.16),

7(bott1 (q, uptig)((e0)41([2]))) (4.20)
= 7(bott1(pqQ, upuy)(10(2))) (e4.21)
= T(% log(upug () (100 (2)))uqty (9Q) (100 (2))") (€4.22)
= T(%10%(“3(@Q)(Zoo(z))))uq(wQ)(loo(Z*)))) (€4.23)

—T(%m. log(uy (¢Q) (100 (2))up (1) (10(27)))) (e4.24)
= 0q((2q)1([2]))(7) = mp((p ) ([2])) (7) (e4.25)
= n([z])(r) = n([z])(T) =0 for-all T € T(B), (e4.26)

where we also use g and ¥g for pg ® idy, and g ®idas,, and uy and ug with uy, ® 1y, and
uq with ug ® 1y, , respectively.

Now suppose that g € Gi,0. Then g.= (k/m)(10)1([2]) for some z € U, where k, m are
non-zero integers. It follows that

7(bott (v, uptg)(myg)) = k7(botti (v, upug)(([2])) =0 (e4.27)

for all 7 € T'(B). Since Aff(T'(B)) is torsion free, it follows that

T(bottl(ch,upu;)(g)) =0 (e4.28)

for all g € G, and 7€ T(B). Therefore, the image of R! under botty (¢g, upuy) is in ker ppgq-
One may write
Gio=Z"'®L/pZG - & L[psL,

where r is a non-negative integer and pq, ..., ps are powers of primes numbers. Since p and ¢ are
relatively prime, one then has the decomposition

G1,0 =Z" ® Tory(G1,0) @ Torg(Gi0) C K1(A),

where Tory(G1,0) consists of the torsion-elements with their orders divide p and Torq(G1,0)
consists of the torsion-elements with their orders divide q. Fix this decomposition.

Note that the restriction of (1)1 to Z" @ Tory(G1y) is injective and the restriction to
Tory, (G1,0) is zero, and the restriction of (¢q)«1 to Z" @ Tor,(G10) is injective and the restriction
to Tory(G1,0) is zero.

Moreover, using the assumption that p and g are relatively prime again, for any element
k € (19)s1(Z" ® Tory(G1,)) and any nonzero integer ¢ which divides ¢, the element k/q is well
defined in K1(A ® M,); that is, there is a unique element s € K1(A ® M) such that gs = k.
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Denote by e, ..., e, the standard generators of Z". It is also clear that

(200 )1 (Torp(G1,0)) = (200)s1(Torg(G1,0)) = 0.

Recall that Doy = {k/my; k € Z} C Dy and Do q = {k/mq; k € Z} C Dy for an integer my,
dividing p and an integer myq dividing q. Put mo = mymy.
Consider %Z’" C Ki(A®Q), and for each e;, 1 < i < r, consider

1 . .
m—bottl(go ® idg, upug)((1ec)+1(ei)) € ker ppeq-

(e 9]

~ ~Y

Note ker ppgg = (ker pp) ® Q, ker ppgn, = (ker pp) ® Dy, and ker ppgn, = (ker pg) ® Dy.
Since ker pagq is torsion free, bott1 (¥ ® idg,upug) maps Tory(G1o) to zero. Suppose that
(i)bottl(w ® idq, upuy) maps 1eo(e;) to D21 @5 ® 1y 5, where x;; € kerpp and i ; € Q,
j=1,2,....,m;and i = 1,2,...,7. Since p and q are relative prime, any rational number r can be
written as r = 1, — rq with 7, € Q, and rq € Qq (see, for example, 2.6 of [18]). Hence there are
rijp € Qp and 7554 € Qq such that 7 ; =755 — i jq, 7 = 1,2,...,m; and ¢ = 1,2,...,7. Choose
Gip = Z;”:q xi; @1 and giq = Z;”:q T @71 jq- Then g;, € ker ppgag, and g;q € ker ppg, -
Moreover,

bott (¢ ® idg, upng) (——((10e)er(€:))) = Uip)so(gha) = (ia)eolgi). (e4.29)

oo
where g;, and g; q are identified as their images in Ko(A® Q).

Note that the subgroup (1)1 (G1,0) in K1(A ® M,) is isomorphic to Z" @ Torq and mip(Zr @
Tor,) is well defined in K (A® M,), and the subgroup (1q)«1(G1,0) in K (B ® Mj) is isomorphic
to Z" @ Tor, and miq(ZT @® Tory) is well defined in K;(A ® M;). One then defines the maps
Oy mip(zp)*l(Gl,o) — ker ppgn, and 0 : m%](lq)*l(Gl,o) — ker ppgm, by

O ()or(€)) = gl and Oyl (1q)un(e0)) = g
My Myq
for 1 <i<rand
Ol tor((p).1(G1,0)) = 0 and - OglTor((uq).1(G1,00) = O
Then, for each e;, by (e4.29), one has

(gp)«0 © Bp 0 (1p)x1(e:) — (Jq)x0 © Oq © (2q)x1(es)
:7M%%MWWWMW—%%NMM%WwM»
= myuymq((Jp)«0(gip) — (Jg)x0(giq))
= moobottl(wQ,upu;‘) 0 (100 )x1(€5/Moo)

= bott1(pq, upug) © (100)x1(€:),

where pg = ¢ ®idg. Since the restrictions of 6 o (1)1, 0 0 (19)+1 and bott1 (pg, upuy) o (teo)x1
to the torsion part of G are zero, one has

bott1(pQ, uptg) © (tec)s1 = (Jp)x0 © Op © (2p)s1 — (Jg)x0 © Oq 0 (1g)s1  on Gip. (e4.30)
The same argument shows that there also exist maps

oy - —((1p)e0(Go0)) — K1 (B @ My)

My
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and
0+~ ((1q)e0(Gig)) — Ka(B @ My)

q
such that

botto(pq, uptig) © (200)x0 = (Jp)x1 © A © (2p)x0 — (fg)s1 © g © (29)s0 0on Gop- (e4.31)

Note that G; o € Gi0, 71 = 0,1, t = p,q. In particular, one has that

(20)%i(Gi0) C (20)4i(Gi),

and therefore 1 1
Top C ﬁp(lp)*O(Gl,O) and G 4 C Hq(zq)*o(GH 0)-

Then the maps 6, and 6, can be restricted to G/1,0 p and G} 0,q Tespectively. Since the group G, O
contains (J5, .o )«i(K;(Cy,)), the maps 0, and 6, can be restricted further to (J§, o)« (K1(CH,))
and (Jil, 00)«1 (K1(C1,)), respectively.

For the same reason, the maps o, and aq can be restricted to (J5,s0)0(Ko(Ch, o) and
(Jng,00)%0(Ko(Cil, 00)) Tespectively. We keep the same notation for the restrictions of these maps
Qp, ag, Op, and 0.

By the universal multi-coefficient theorem (see [2]), there is k, € Homa (K (Ch,®C(T)), K(B®
M,)) such that

Hp‘ﬁ(Kl(C{J)) = _ep ( ng, oo) 1 O,@ and ﬁp|ﬂ(K0(Cﬁp)) = —0po (Jgp,oo)*o 06_17 (e 432)

where 3 : K(-) = K(-® C(T)) is defined by the identification K(-® C(T)) = K(-) ® B(K(-)).
Similarly, there exists xkq € Homy (K(C}, ® C(T))), K(B ® My)) such that

Kq‘ﬁ(Kl(Cé)) = —9 (e] (Jn OO)*l (e] ,6 and Kq|B(KO(erLq)) = —Oéq o (ngoo)*(] o 18_1. (e 433)

Define

Corup = (AN = (P ® 1) + o (P)upug) An — q(d); ® 1) + ¢o(q) © 1Q)uquy))-

Recall that we use up := (up ® lpy,) ® 1y and uq := (uq ® 1pg,) ® 1x above. Choose the
unique Cx;,u,b € U(B)/CU(B) which is represented by a unitary Zolu € U(B) such that

diag(zx}u’b, In-g) = C%u’b (see Theorem 11.10 of [6]). Choose Zal e € U(B ® M) such that

[Zx/_ ] = ap(x;-,p) and [Z$;7q] = —aq<;]j‘/7.7p)‘ (e 434)

J:p

Then, by (e4.31),

Fi = G aup(zar @ 1ag) (20 ®1n,)* € Uo(B® Q)/CU(B® Q). (e4.35)

dentify Up(B)/CU(B) with AR(T(B2Q)/ppeq(Ko(B & Q)) = AR(T(BEM,))/ppor, (Ko(B © 1y).
So we may also view f; € Ug(B ® M,)/CU(B ® M,). Define

Cx;,p,up = (szx;,p) and Cx;,q,uq R Z A

/
7,4

Note that

C:p;,u,b = (in (Cm;p,up )) (]qi(Ca:’

a0 %a

). (e4.36)
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Define the map I, : Z¥ — U(B ® M,)/CU(B ® M,) by
Fr(i’fggt) = Cz;

Note that, by (e4.13), (e4.32), (e4.33), and (e4.34),
H%‘(@M}J(Fp(m;’p)) = —rpo B(z},) and M5, (Tq (a:;q)) = KqO B(m;’,q), (e4.38)

where the map II%( ,, is defined in 2.4. Since gi. € kerpagns,, £:(B(K1(Cy,))) C ker ppeu,,
t=p or v = q. By Theorem 3.3, there exist unitaries w, € B ® M, and wq € B ® M, such that

Ifwp, ep (@)l < 32/8,  [[wq, Lq()]]l < 05/8, (¢4.39)

for any z € HY @ H* and y € H” @ HY, and

vy 1<j<k (e4.37)

v
7r7

Bott(¢p, wp) o [} o] = kpo B and  Bott(pg, wy) o [J3 ] = kg0 B, (e4.40)
and
dist(Cor g Te(@f)) < 7/(64N (1 + > [Mryl)) and (e4.41)
1,3
Aist(Cr g Teli))) S 9/(OAN(L+ 3 IMrgl) 1<G <k, (e442)
()
where

Cor oz = (A = (£0) (0, + (@) @), )l ) (A = (2e) () + () (@)™,

J,e?

where wEN) =w, ® 1y and v =p,q. Define

€ e = (In — () (0) F e (@)™ (A — (0 (@) + () (@)w™)),  (ed.43)

J,v’

where wEN) = w, ® 1y and define (with wy := wy, ® 1p7, and wq 1= wq ® 1ay,)
Corwr = (1= 9o (pi) + o (pi)wi)(1 — ¢o(ai) + pq(gi)w:)), and (e4.44)
Coswr = (L= (pi) + 0o (P)wi) (1 — ¢o(a) + ¢o(gi)we) ® In-1), (e4.45)

t=p,q. Also, define

Gain = (1 = 9@ (pi) + P (Pi)upug) (1 — q(4i) + vQ(gi)uquy))) and (e4.46)
Cor = {1 = (i) + Qi) upu) (1 — po(a:) + @i uqup) ® In-1)). (e4.47)

By the choice of # and ¢, and by (e4.9) (see also Lemma 11.9 of [6]),

dist( gw,H “/”’;;g, ) < /32, (e 4.48)

and, together with (e4.41), (e4.42), (e4.6) and (e4.7),

Mr”

dist( (“U ,H(MT” ) < /8 and dist( CZw ,HC ) < /8. (e4.49)
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Put v = weue. In what follows we will also write v, for vy, ® 1y, € A ® @ and vy for
vy ® 1y, € A® Q, whenever it is convenient.
We have, by (e4.49), (¢4.48) and (e4.36),

dist(((1 — (¢ ® idg)(pi) + (¢ ® idQ) (pi)vpvi) (1 — (¢ @ idg)(gi)+(p ® idQ)(qz-)qu;‘»M, (1p2q))
= dlSt(C%wPCﬁu a]c\l/-[,wj %)

= dist((¢} w,,HcM’“” HC,M“J@%, Hc,M“f H

Ea

Mr;
J Cx],wq 1B®Q)
@],

k k
< dist(¢M,, H J‘p”’"” ) +dist([] ¢ M’”” ¢, HC, ), Tpeq) + dist(¢Y *,HCZMT”
.7 U ’ 7,9

e i
< v/8+ /32 +’y/8 < /3.

That is
dist((;_f\gqv;, 1Baq) <7/3, (e4.50)
where
Gy = (1= q(pi) + 0o (Pi)vqup) (1 — 0Q(ai) + vo(gi)vpv;))-
By the second part of 3.2,
diSt(Cxl VqUE 1B®Q) diSt(C;;:}qus’ 1B®Q) < ’7/37 (e 4'51)

Then, by (e4.14) and the line below it, and, by (e4.17), (¢4.18), and (e4.39), one also has

14 @ idg(x) — vi(p @ idg) (@)uyll < 8/4, Ve e H” @HY @ HY and  (e4.52)
14 @ idg(z) — v} (p® idg)(@)vgll < 85/4, Ve HY @ HY @ HY. (e4.53)

Hence
[[vpvy, ¢ ®idg]ll < 55/2 < 0o, YV €H.

Thus Bott(¢q, VpUg ) is well defined on the subgroup generated by P. Moreover, a direct calcu-
lation shows that

botty (¢ @ idg, vpvy) © (100)x1(2)
= botti (p.®idg, wy) o (1)1 (2) + botti (¢ ® idg, upuy)) o (100)+1(2)
+hott1(p @ idg, wy) © (tec)1(2)
= (Jp)x0 o bott1(p @ idpg,, wy) 0 (2)«1(2) + bott1 (¢ ® idg, upuy) © (100)x1(2) +
(Jg)«0 © botty (p @ idas,, wy) o (29)+1(2)
= —(Jp)w0 0 Oy 0 (1p)x1(2) + ((Up)s0 0 Op 0 (1)1 —
(4q)%0 © 0g © (2g)x1) — (—(Jg)«0 © Oq © (29)x1(2)) (see (e4.40), (e4.30) and (e4.33))
= 0 for all z€ G(P)1p

The same argument shows that botto(y ® idg,vpvy) = 0 on G(P)op. Now, for any g €
G(P)1,00,0, there is z € G(P)1,0 and integers k, m such that (k/m)z = g. From the above,

bott1 (¢ ® idg, vpvy)(mg) = kbotti (¢ ® idg, vpvg)(2) = 0. (e4.54)
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Since Ko(B ® Q) is torsion free, it follows that
bott1 (¢ ® idg, vpvg)(g) = 0
for all g € G(P)1,00,0- So it vanishes on P N K (A ® Q). Similarly,
botto (¢ ® idg, vyvy)lPnK,(Aeg) = 0

on PN Ky(A® Q).
Since K;(B ® Q,Z/mZ) = {0} for all m > 2, we conclude that

Bott(p ® idg, vyvg)lp = 0

on the subgroup generated by P.
Since [¢] = [¢] in KL(A, B), ¢; =13 and ¢f =1}, one has that

[p®@idg] = [ ®idg] in KL(A® Q,B® Q), (e4.55)
(p@idg)y = (¥ ®idg)y and (p ®idg)t = (¥ ® idg)F. (e4.56)

Therefore, by Theorem 12.11(a) of [6], ¢ ® idg and 1 ® idg are approximately unitarily
equivalent. Thus there exists a unitary v € B ® @ such that

lu* (¢ @ idg)(c)u — (¢ @idg)(c)|| < §5/8for all c € H'. (e4.57)
It follows that from (e4.52) that
Juvy (¢ @ id@) (c)upu” — (¢ ®@idg)(c)|| < 03/2 +d5/8 Vee H'. (e4.58)
By the choice of §5 and H', Bott(p ® idg, vyu*) is well defined on [Jy 00 (K(Ch,)), and
|7 (bott1 (¢ ®idg, vpu’)(2))| < 62/2, V7 e T(B),Vzeg.

For each 1 < ¢ < m, define (see (¢4.8))

Gy = (1 =(pQ)(0i) + ((p@) (p2))uvy) (1 = (p@)(a) + ((p@)(4i))vpu*)),

and define the map I' : Z™ = Gf , = U(B® Q)/CU(B ® Q) by I'(zi) = (z;uv;- Note that
H%IL@Q oI'(z;) = Bott(¢g, vpu*)(z;). By Theorem 3.3, there exists a unitary y, € B ® Q such
that

lyp, p(M)]ll < 6/2, VheH, (e4.59)

and
Bott(pq, yp) = Bott(pq, vpu”)
on the subgroup generated by P, and
dist (Ca; 5, T'(i)) < /2,

where

Gy = (1= (@) (i) + (@) (Pi)yp) (1 = (v@)(4i) + (vQ)(ai)yp))-

Consider the unitary v = yyu, one has that

[[vvy, (p @idg)(R)]|| <6, for all h € H and Bott(y ®idg,vv,) =0
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on the subgroup generated by P, and for any 1 < i < m,

dist(Ca, wug, 1) < 7/2, (e4.60)

where

Caiwvy = (1= (@) (p) + (@) (pi))vvy) (1 = (0@) (4) + ((p@Q) (¢i))vpv*))-

Applying Lemma 3.1 to A® Q and g = ¢ ®idg, one obtains a continuous path of unitaries

zp(t) in B ® @ such that z,(0) = 1 and 2y(t1) = vy, and
I[zp(t), (p ®1idgQ)(c)]|| < /8 Vee &, Vte|0,t]. (e4.61)
Note that
Bott(pq,vqv") = Bott(pg, vqv,vpv™) (e4.62)
= Bott(pq,vqv,) + Bott(pq, vpv™) (e4.63)
= 0+0=0 (e 4.64)

on the subgroup generated by P, and for any 1 < ¢ < m,

dist(Ce; vques 1) < dist(Ceyvqugs 1) + dist(Ca; vpoe, 1) (e4.65)
=7, (by (e4.51) and (e 4.60)) (e4.66)
where
Coiwgor = (1 = 9@ (pi) + (0@) (pi)vqv*) (1L = () (@) + (¢@)(a)vv;)) (e4.67)
Since

I[vvg, (¢ @idQ)(c)]ll <6, VeeH,
Lemma 3.1 implies that there is a continuous path of unitaries z4(t) : [tm—1,1] = U(B®Q) such
that zq(tm-1) = vvy, 24(1) = 1 and
[zq(t), (¢ ®idg)(c)]]| < /8, Vt€ [tm-1,1], Vce€&. (e4.68)

Consider the unitary

v, if tl Stgtmfla

2q(t)vg, if tp1 <t <tp.

Then, for any ¢;, 0 <i < m —1 by (e4.59) and (e4.57), (recall € C H C H'), one has that,
for any ¢ € &,

[0*(t:) (@) (c)u(ti) — (vQ) (A
[u™yp (0@) ()ypu — (YQ)(c)|
[u™(p@)(c)u — (¥Q)(c) || +6/2
85/8+8/2 < 3e/4.

<

<

Thus, for any t € [tj,t;41] with 1 < j < m — 2, one has, by (e4.1), for any a € F; and
be Fs,

[0*(8)(p @ id(a @ b(t)))v(t) — ¢ @id(a @ b(D))| (e4.69)
[o(t5)"(p(a) @ b(t))v(t;) — ¥(a) @ b(H)]] (e4.70)
(e4.71)
(e4.72)

A

[o(t;)* (p(a) @ b(t;))v(t;) — v(a) @b(E;)]| +e/4
< 3e/d+e/i<e.
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For any ¢ € [0,t1], by (e4.1), (e4.61), and (e4.52) (note that 0, < ¢/16 and &, C H) , one
has that for any a € F; and b € Fo,

[0*(#) (¢ @id(a ® b(t)))v(t) — ¢ @id(a © b(t))]| (€4.73)
= gz (8)(p(a) @ b))z (t)vp — (a) @ b(D)] (c4.74)
< I35 (0(6(a) @ bn)5(00y = () & 1o + /2 (e4.75)
< (@) @ blto))vp — h(a) @ bito) | + /8 + /2 (e4.76)
< €/16+5¢/8 < e. (e4.77)

The same argument shows that for any ¢ € [t,,—1, 1], one has that for any a € F; and b € Fo,
" (0)(( @ idg)(a @ bH)u(t) — (b ® idg)(a @ b(1))| < e. (e4.78)
Therefore, one has
lv(p @id(f))v — ¥ ®@id(f)|| < e for all f e F.
O

Theorem 4.3. Let A and B be unital separable simple C*-algebras. Suppose that A is finite
and amenable, and satisfies the UCT, and suppose that B -is Z-stable and ¢TR(B ® M) < 1
for all supernatural number ¢ of infinite type. Let p,v : A-— B be two unital monomorphisms.
Then there exists a sequence of unitaries {u,} C B.such that

nl;n;ou Y(c)uy, =(c) for all c € A,
if and only if

Proof. Note, by the remark at the end of 2.10, gT R(A® M,) < 1 for any supernatural number t
of infinite type. In what follows we let B = B® Z. Choose a pair of relatively prime supernatural
numbers p and q of infinite type. Let p: Z, ¢ — Z and A : Z — 2, 4 be unital embeddings given
by Proposition 3.5 of [23]. Then po A : Z — Z is a unital embedding. Therefore po A and idz
are approximately unitarily equivalent (see Theorem 7.6 of [10]). Let jp : D — D ® Z be the
unital embedding d = d®1z and let Ep : D — D® Z, 4 be the unital embedding d — d® lz,,-
for any unital C*-algebra D.

Then jpoyp = (p®idz)oja and (idp ®A)ojpop = (¢ ®idg, ) o Ea. Also (idp ®\)ojpot) =
(1/1 X idgp’q) o Fy.

By Lemma 4.2 (together with the remark at the end of 2.10), (idg ®\)ojpoy and (idp ®A)o
jp o v are approximately unitarily equivalent. It follows that (idp ®u) o (idp ®\) o jp o ¢ and
(idp ®@u)o (idp ®A) o jp o 9 are approximately unitarily equivalent. As p o X is approximately
unitarily equivalent to idz, jp o ¢ and jp ® ¢ are approximately unitarily equivalent.

Recall B = B ® Z and the unital embedding jz : 2 — Z ® Z is approximately unitarily
equivalent to idz, we conclude that ¢ and v are approximately unitarily equivalent.

O

Remark 4.4. The condition that gT'R(B ® M,) < 1 in Theorem 4.3 may be replaced by that
B is amenable and satisfies the UCT (see [3]).
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5 The Range

Theorem 5.1. Let A be a separable amenable C*-algebra which satisfies the UCT with a fixed
splitting map sa as in 2.4 and let B be a unital C*-algebra such that T'(B) # 0. Suppose that
there are two unital homomorphisms ¢,v : A — B such that T o p = T o for all T € T(B).

(1) Suppose that KK (p) = KK (). Then there is a homomorphism ¢ : K1(A) — Aff(T(B))
such that

(¢t =t osa=2pos, (e5.1)

where Xp : Aff(T(B) — Aff(T(B))/pp(Ko(B)) is the quotient map.

(2) Suppose that KL(p) = KL(v). Let K1(A) = U2, Gy, where G, C Gpy1 C K1(A) is a
finitely generated subgroup. Then, for each n, there is a homomorphism o, : K1(A) = Aff(T(B))
such that

(o' =t o sala, =T o dnla,. (€5.2)

Proof. Let z € K1(A) be represented by a unitary u € M, (A) for some integer n > 1. As before,

we will continue to use ¢ and ¢ for the extensions ¢ ® idy, and ¥ ® idyy, , respectively. Then

[p(w)(u)*] = 0 in K;(B). By replacing u by u @ 13 in M, for some integer k¥ € N and n

by n + k, without loss of generality, we may assume that p(u)(u)* € Uy(My(B)). It follows

that there is a continuous and piecewise smooth path {v(t): t € [0,1]} C M, (B) such that

v(0) = @(u)(u)* and v(1) = 1y, (). Put w(t) = v(t)y(v). Then w(0) = p(u) and w(1) = P(u).
Then, in Af(T(B))/p5(Ko(B)).

1 v -
- wosall) = 5o [ 7 ui)yar + p (B (¢5.3)
0
L ) R
= o [ e @)+ pp(Ro(B))  (r € T(B)). (e5.4)
™ Jo
Let
Moo = {(b.a) € (0,11, B) & 4 b(0) = pla) and b(1) = v(a)} (¢5.5)

be the mapping torus. Since 7o = 701, as in 2.8,

1 w
Roo((®) = 5 [ r(*5 2w ear (¢5.6)

gives a homomorphism R, : K(M, ) — Aff(T(B)).

If KK () = KK(1), as in 3.4 of [15], there is a splitting map 6 : K;(A) — K;(M, ) such
that 0(2) — [w(t)] € ts1(Ko(B)), where v : B — M, is the embedding (see also 3.3 of [15]).
Then

Ry (0(2) — [w(t)]) € pB(Ko(B)). (e5.7)
Define
5= R,y 00 : K1(A) = Af(T(B)). (5.8)
One then has
(¢F —9¥) 0 sa(2) = Sp o d(2). (5.9)
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This proves the case (i).

For case (ii), let KL(p) = KL(¢). Then, for each n, there is a homomorphism 6, : G, —
K1(My ) such that (7).« © 0, = idg, , where m, : M, , — A is the quotient map, n = 1,2, ....
Since Aff(T'(B)) is divisible, there is 6, : K1(A) — Aff(T(B)) such that d,|g, = Ry © On,
n = 1,2,.... Note that, if z € Gy, then 0,(2) — [w(t)] € ts1(Ko(B)). The computation above
shows that

Ry (0n(2) = [w(t)]) € pp(Ko(B)). (e5.10)
It follows that
(' — ! 0 sa(2) = Sp o ba(2). (e5.11)
This proves the case (ii).
O

Lemma 5.2. [cf. Lemma 6.8 of [18]] Let A and B be unital separable simple C*-algebras such
that A is finite and amenable, and satisfies the UCT, and gTR(B @ M) < 1 for any super-
natural number v of infinite type. Suppose also B is Z-stable. Let .k € KL.(A,B)™ and
A Aff(T(A)) — AE(T(B)) be an affine homomorphism which are compatible (see Definition
2.6). Then there exists a unital homomorphism ¥ : A — B such that

(V] =k and (V) = A

Moreover, if v € |J,~; U(My(A))/CU(M,(A)) — U(B)/CU(B) is a continuous homomorphism
which is compatible with k and X\, then one may also require that

U104y cv(a) = Yo ayecucay and (B)tosy =yoss—h, (e5.12)
where s4 : Ki1(A) = U(A)/CU(A) is a splitting map (see 2.4), and

B s K1(A) = Rps(Ko(B)/pp(Ko(B))
s a homomorphism.

Recall that B has stable rank one (see Theorem 6.7 of [24]). By the last part of 2.6, the map
u — diag(a, 1,,) : U(B)/CU(B) — U(M,,(B))/CU(M,,(B)) is an isomorphism.

In the following proof and rest of the paper, we will use Fp to denote the homomorphism
Ep:D — D® Zq defined by d— d® 1z, for all d € D and for any C*-algebra D.

Proof. Let p and q be two relative prime supernatural numbers of infinite type such that Q) =
M, @ My. Let Ay = A@ My, Ag = A® My, By = B® M, and By = B® M,. Note, by the second
part of 2.10, gT R(A,) < 1 for any supernatural number ¢, and by the assumption, gT'R(B;) < 1.
Let ke € KL(Ay, By), A : Aff(T(Ay) — AF(T(By)), % : U(A:)/CU(Ay) — U(B,)/CU(By)
be induced by k, A and =, respectively (see Lemma 6.1 of [18] for =) for infinite supernatural
number t, including the supernatural number oo (recall My, = Q). Moreover, M, = M,®@M, for
any supernatural number v of infinite type. It follows from Corollary 24.4 of [7] that there is a
unital homomorphism ¢, : A, — B, such that

[op] = Ky in KL(Ay, By), (gcvp)i =7 and (pp)s = Ap. (e5.13)
For the same reason, there is also a unital homomorphism 4 : A; — By such that

[Wg] = kq in KL(Aq, By), (@bq)i =, and (¢q); = Aq. (e5.14)
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Define ¢ = ¢, ®@ idy, and ¢ = 9 @ idpy, : A® Q — B ® Q. From above, one has that

[e] =[] in KL(A®Q,B®Q), 5=ty and @' = ¢p'= 1. (€5.15)
Since both K;(B ® Q) are divisible (¢ = 0, 1), one actually has
[Pl =[] in KK(A®Q,B® Q).

As in the proof of Theorem 28.7 of [7] (see also the proof of Theorem 28.3 and (e.28.6) of [7]),
there is 5 € In((A®Q), BoQ) with KK (8) = KK (1(4sq)) (Where 1 4g@) is the embedding
of Y(A® Q) into B® Q), (Bo¥)r = ¥r, (Boy) =T, and Ry goy = —Ry . It follows that
Ry oy = 0 (see also the proof of Theorem 28.7 of [7]). Then, by Theorem 27.5 of [7], ¢ and
B o are asymptotically unitarily equivalent. Since K;(B ® @) is divisible and Ko(A ® Q) is
torsion free, H1(Ko(A® Q), K1(B®Q)) = K1(B® Q) (see Definition 28.10 of [7] for notation).
It follows that ¢ and [ o ¢ are strongly asymptotically unitarily equivalent.
Note that one may identify T'(By), T'(By) and T'(B ® Q). Moreover,

pB2Q(Ko(B ®@ Q)) = Rpp(Ko(B)) = p5, (Ko(By)).

Denote by 1, : By = B ® Q the embedding a — a ® 1, (where 1; := 1,,), and note that the
image of 1, 0 ¢4 is in the image of . Thus, by Lemma 3.5 of [18], Rgoy,0pq,p00, 1S i

Hom (K1 (Mgor,ou ayou ) £8¢(Ko(By)))-
Note that
[B oy ot)g] = [1p o)y in KK(Aq, By).
By Theorem, 28.3 of [7], there exists o € Inn(¢)4(4,), By) such that
[a] = oy ap)] in KK (Yq(Aq), By), (e5.16)

where 2, (4,) is the embedding of 1q(Ay) into By, and

Ra,zwq(Aq) = _Eﬁozpowq,zpowq-
One computes (just as Lemma 6.5 of [18]) that

[ipoaothy =[Boroty] in KK(Ag, B®Q), (e5.17)

(gpoaotpy); = (8o oty and (1 0aoth,)t = (8010, (e5.18)

and B

Rzp ooy, Borpothg — 0.

It follows from Theorem 27.5 and Theorem 28.13 of [7] that 12, o w0 94 and (01, 0 9, are
strongly asymptotically unitarily equivalent.

We will show that 3o and (ao1)) ®idyy, are strongly asymptotically unitarily equivalent.
Define 81 = (B o1y 0ty) ®idy, : A® Mg®@ My = B®Q® M,. Let j: Q — Q ® M, be defined
by j(b) = b® 1,. Consider the C*-subalgebra

C=pBoy(lagm, ® My) ® My = (1p, ® My) ® M, C B® Q ® M. (€5.19)

(note ¥ (lagnr,) = 15, and Y(lagr, ® My) = 1, ® M,). Since K1(C) = {0}, in C,
(idp ®j) o (81 Bq® M,) and jo are strongly asymptotically unitarily equivalent, where jo : M, —
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C is defined by jo(a) = 1pgqg ® a for all a € M,. In particular, there exists a continuous path of
unitaries {v(t) : t € [0,1)} C C such that

}irriAdv(t) o(idp®j)o (Boy)(la, ®a) = 1pgg ®a for all a € M,. (5.20)
—

Note that, for aq € Aq, (idp ®7)(8 o ¢P(aqg @ 1p)) = B(¥g(aq) ® 1) @ 1,. Then, by (e5.19), v(t)
commutes with (idp ®7)(8 o ¥(aq ® 1;)). It follows that (idp ® j)of o ¢ and B are strongly
asymptotically unitarily equivalent. Since 1, o a0 1)y and 3 o1, 0 1), are strongly asymptotically
unitarily equivalent, one concludes that (idp ® j) o S0 and (7 o a0 ¢,) ® idyy, are strongly
asymptotically unitarily equivalent. There is a homomorphism 6 : ) ® M, — () such that foj :
@ — @ is strongly asymptotically unitarily equivalent to idg. Consequently, (idg ® 6) o (idp ®
j)ofo1 is strongly asymptotically unitarily equivalent So), and (idg ®6)o ((zp oaothy)®id Mp)
is strongly asymptotically unitarily equivalent (ao1)q) ®idays,. Therefore o) and (o)) ®idy,
are strongly asymptotically unitarily equivalent.

Finally, we conclude that (a0 vq) ®id M, and ¢ are strongly asymptotically unitarily equiv-
alent. Note that, by (e5.16), o 0 94 is an isomorphism which induces I'.

Thus, there is a continuous path of unitaries {u(t) : t € [0,1)} in B ® M, ® M, (it can be
madeinto piecewise smooth—see Lemma 4.1 of [15]) such that u(0) =1 and

%in% adu(t) o p(a) = (ao1y) ®idpy,)(a) for all.a € A® Q. (e5.21)
mry

Note that, if a € A ® Z, 4, then a(0) € A® M, ® 15;.and ¢(a(0)) € By, ® 14, and a(1) €
A® Mg ®1,, and

This provides a unital homomorphism ® : A® Z, 5 — B ® 2, 4 such that, for each ¢t € (0,1),
7o ®(a) = adu(t) op(a(t)) for all a € A® Z, 4. (e5.22)

Denote by Cj a commutative C*-algebra with Ky(Cy) = Z/kZ and K1(C}) = {0}, 2,3, ...., and
Co = C. So one identifies K;(A ® Cf) with K;(A,Z/kZ) (i =0,1).

Note that [E4] : K(A) = K(A® Z,4) is an isomorphism in Homp (K (A), K(A ® Z,4))
(recall Ko(2,4) = Z and K;(Z,q) = {0}). Denote by [E4]~! the inverse of [E4] and k% €
KL(A® 2,4, B® Z, ) the composition [Eg]oro[E4]~!. One computes, applying the Kiinneth
formula, that £%(g ® [1z,.]o) = £(g9) ® [1, ,Jo for all g € K;(A® Cy), k =0,2,..., and i =0, 1.

Thus we have the commutative diagrams:

Ki(A® Cy) Ki(A® Ch® Zyg) = Ki(A® Cr® M,) & Ki(A® Cy @ M,)

\LN\KO(A,Z/M) \LKZ\KZ.(A(@C,C@Z,,,E,) impeamq (e 523)
[Esgcy] [me]

K (B® Ck) — Ki(BeCr®Zyq) — Ki(B®C,®M,)®K;(B®C,® M,)

[Bagcy]
s

and

[71'5]

K(A®Cr®Zyq) — K(A®C,oM,) d K;(A®Cy® M,)
Y@llo a2 Vgplol] (€5.24)
Ki(BoCr®Zyq) = Ki(B®CroM,)®K(B®C o M,)
(recall Ep : D — D ® Z, 4 is defined by Ep(d) =d® 1z, ), where . : D ®@ Zy ¢ — (DQM,,) ©
D ® My denotes the quotient map (for D = A ® Cj, and D = B ® C}). Recall, by (e5.13) and
(€5.14), [pp] = Kp and [1)q] = Kq. Note (since p and q are relatively prime) that [r.] is injective
(see Proposition 5.2 of [26]) and [jp] is an isomorphism. Therefore, from the commutative
diagrams (e5.23) and (e5.24), one concludes that K L(®) = x%.
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Let 1 : Z, 4 — Z be the unital embedding given by Proposition 3.3 of [23]. Define ¥ : A —
B® Z by (idp ®n) o ® o E4. Note [idg ®n] = [Eg]~!. Then ¥ is a unital homomorphism such
that K L(¥) = [Eg] 'ok? o E4 = k. For each t, and 7 € T(B), 7(®:(a)) = A\(a)(7) for all a € A.
One then checks that 7(¥(a)) = A(a)(7) for all a € A5, and all 7 € T'(B). In fact, one has that

Oy(a®@b)(T® p) = Aa(r))u(b) for all a € Asq. and b € (Zp4)s.a. (e5.25)

for any 7 € T'(B) and p € T(Z,4).
Note that it follows from (e5.25) that
(@ 0 Ba)Hunay/cucay = Eh o lunay/cua), (€5.26)

Then, one has, for t € (0,1),
7rto<I>oEAi——*y =} o, eb.27
Q Q

where 1o : B — B ® Q is defined by 1g(a) =a®1g and 79 : U(A® Q)/CU(A® Q) - U(B®
Q)/CU(B®Q) (see Lemma 6.1 of [18]). On the other hand, for each z € U (M}, (A))/CU(M(A))
for some integer k£ > 1, let wo € U(B) be such that its image wo = y(z). Put wy =wo® 1z, €
B ® Z, 4 and w = diag(w, 1x—1).

In what follows, we will use H for H ® idy, (for a map H) and U(t) for U(t) ® 1p,, in
particular, this includes the case H = ¢.

Then

mi(w) = mp(w) for all ¢,¢ € [0,1] and EiB ovy(z) =w. (e5.28)

Since m¢(w) € B is constant, one may use w for its evaluation at ¢. Let vy € U(M(A)) be such
that v = z.
Let Z = ®(E4(vo))w*. Then, for any ¢t € (0,1),

Z(t) = mpo®(E4(vo))w™ = u(t) p(vo)u(t)w™. (5.29)
Since (&, A,7) is compatible, in'K1(B ® Z, q),
2] = [®(Ea(vo))w’] = [7 (Ba(vo)][ws © 1z,,] = [x([vo]) ® 1z, ][wf @ 17,,] = 0.

It follows that diag(Z, 1) € Up(Mpm+1(My(B)® Z,4)). Let Zi(t,s) be a piecewise smooth con-
tinuous path of unitaries in Uy (M1 (M (B)® 2, q)) such that Z1(¢,0) = Z;(t) and Z:(¢t,1) = 1.
Denote by 7y ‘the unique tracial state in T(Q), where t is a supernatural number. For each
sy € T(Z,4), one may write

1
sula) = /0 ro(a(t))du(t),

where p is a probability Borel measure on [0, 1].
To apply Lemma 6.6 of [18], put V (t) = diag(u(t), 1), o™tV (a) = diag(p(a), ¢(a), ..., ¢(a))
and wy = diag(w, ¢(vg), - ,¢(vy)) as well as (for a € A)

P () = diag(((a 0 ¢q) @ idag, ) (a), p(a), -, (a)).
Then Z;(t) = V(t)* o™+ (v)V (t)w} for all t € [0,1) and

lim V(£)* ™) (00)V (et = diag(u(t)*p(vo)u(t)w”, 1).

t—1
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Then, for 7 € T(B) and s, € T(Z4), by applying Lemma 6.6 of [18],

Det(Z1)(T ® s,,) (5.30)

1 S

_ %IH/O (T®5u)(CM§(?)Zl(t,s)*)ds (e5.31)
1 1 s

_ %IH/O /0(T®To)(dzﬁ’)zl(tjs)*)du(t)ds (¢5.32)

o g 47, (t, s) )

= /0(27rﬁ/0 (T®To)(TZl(t,s) ))ds)dpu(t) (e5.33)

1
= [ Dettoluout) (utt) + 1) for some 1 € pi(Ko(BE Q) (e5:4)
= Det(e(vo)wy)(T) + f(71), (e5.35)

where 11 is a Borel probability measure on [0, 1] associated with s,,. Note that, if p,¢ € M,,(B®Q)
are two projections, then there are projections pg, o € My, (B) (for some integer m) and r € Q
such that that [p] — [¢] = r([po] — [q0]). By (e5.15), for any € > 0, there are projection pg, qo €
M,,(B) and r € Q such that

sup{|g(7) —r(7(p) = ()| : T € T(B)} <&, (€5.36)

where g(7) = Det(p(vo)wg)(7) for all 7 € T(B). Put p; = po® 1z,, and 1 = qo ® 1z,,. By
(€5.35), for g1(7 ® s,) = Det(Z1)(T ® sp),

91(7 @ 8) = (T @ 8,)(p1) = (P@ s) (@) < e (€5.37)

for all 7 € T(B) and s, € T(Zy4). It follows
Therefore the map

T(B® Zyq) 37 ® 8, —Det(Z1)(1 ® s,,) = Det((¢(vo)w) (1) + f(7) (€5.38)

defines an element in Rpg(Ko(B)) C Aff(T(B ® Zyq))-
Thus, (® o E4)*(2)(Ep oy(2)*) defines a homomorphism from the group U(A)/CU(A) into
Rpp(Ko(B))/pp(Ko(B)) which will be denoted by hg. By (e5.26),

holug(a)/cu(ay = 0. (5.39)

Thus —hg induces a homomorphism h : Ki(A) — Rpg(Ko(B))/pp(Ko(B)). Since all unital
endomorphisms-on Z are approximately inner (see Theorem 7.6 of [10]),

U (sa(2))1(54(2))" = (1@ n) 0 @ 0 Ba)¥(54(2)))7(54(2) 1) = —h(z) for all z € Ki(A).

In other words,

Utosy=~0s4—h. (e5.40)

O]

Lemma 5.3. Let A and B be two unital separable simple C*-algebras such that A is finite,
amenable and satisfies the UCT, and gTR(B ® M,) < 1 for any supernatural number t of
infinite type. Suppose that B is Z-stable. Let v : A — B be a unital homomorphism. Suppose
that

h € Hom(K1(A),Rpp(Ko(B))/pp(Ko(B)))
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such that there exists h € Hom(K1(A),Rpp(Ko(B))) with h = Y o h. Then there exists a
homomorphism ¢ : A — B such that

KL(Y) = KL(p), ¢ = or and (' — ') o5y = h. (e5.41)

Proof. First, recall, by the second part of 2.10, that ¢TR(A ® M,) < 1 for any supernatural
number t of infinite type. Fix a splitting map s4 : K1(A) = U(Mx(A))/CU(Mx(A)) as defined
in 2.4. Let v : U(Mx(A))/CU(Mx(A)) — U(B)/CU(B) be homomorphism such that

ey e = lanew)prmmy ad vosa=viosa+hosas  (e5.42)

Therefore
(Kﬁ@idgp’q)i oEiosA = EiBO’yOSA —h and H# oyos4 = 1y (e5.43)

In what follows we will identify T'(B) with T'(B ® M,) whenever it is necessary. There is a
homomorphism h, : K1(A® M,) = pp(Ko(B ® M,)) = Rpp(Ky(B)) such that

h = heo (141)1, (e5.44)

where 14, : A = A®M, is the embedding so that 14 (a) = a®1sforall a € A (vis a supernatural
number, including oo which corresponds to Q).
Choose a pair of relatively prime supernatural numbers.p and g of infinite type. We also
require that M, ® My = Q. Put A, = (¢ ® id, ) (A® M), where v is a supernatural number.
It follows from Theorem 28.3 of [7] that there is'a monomorphism fy € H(A;,Bp) such
that

[Bol = [tay) i KEK(ABy). (Bo); = vay,. B5 =14t and (e5.45)

RidA;,ﬂo = hp+ (pB, © fp), (e5.46)

where 2 4/ 1s the embedding o an € Hom( A1 , Ko(b® . (Recall, here, Riq , €
h p' h beddi fA;, df,eH K1(Ayp), Ko(B® M, Recall, h R A7 B0
P

Hom (K1 (Ay), Aff(T(By)))/Ro, where Ry is the subgroup of those A € Hom (K (Ay), Aff(T'(By)))
such that there g € Hom(/(A,), Ko(By)) such that X = pp, o Ag (-see 3.4 of [15]). Put
fo = pB, o fp € Hom(Ky(Ay), pB,(Ko(By))). Denote by ¢ : A — B the map defined by
Pe(a) = (Y @idpg)(a @ 1yy,) for all a € A, v = p,q. Thus

RLpO’LZ’p,LpOﬂ()O’le =h+ (f;; © (ZA,p)*l)a (e 547)
where 1, : By — B ® (@ is the embedding defined by 1, (b) = b® 1,,. Note that ¢, o (¥ ®idyy,) =

P ®idg . o
Similarly, there is a monomorphism 3y € Inn(Af], By) such that

[51] = loag) in KK(A, By), (Br); = 1ay,, BF =14t and (e5.48)
quoqj’mbqoﬁlo@f;q =h+ fé © (ZA:UI)*lv (e5.49)

where 2 : By — B ® @ is the embedding defined by 124(b) = b ® 1a,, and where f; := pp, o fq
for some fq € Hom(K1(Aq), Ko(By)).
Denote by g = 1 0 Bp o (¥ ®idpg,) and Y1 = 1q0 B1 o (¥ ®idyy,). Consider

Yo @idpg, : Ay @ Mg(=A®Q) > B®Q® My(=B® Q) and
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Y1 ®@idpg, 1 Ag @ My(= A®Q) - BRQ® My(=B®Q).
We have

KK (o ®@idy,) = KK (Y1 ®@idag,), (Yo @idag), = (1 @idyy,), and (Yo @ idar,)' = (1 @idpy, )

We also compute that

Rq/10®ind, Widy, T R1/10®id1v1q W@idg T Rw®idQ7'¢’1®idMq (e5.50)
= —hoo+heo =0. (eb5.51)

It follows from Theorem 27.5 and Theorem 28.13 of [7] that there is a continuous path of unitaries
{U):te€]0,1)} cU(B®Q) with U(0) = 0 such that

lim U(#)" (¢ @ idar, ) (@)U () = (1 @ idag, ) (a). (e5.52)

By Lemma 4.1 of [15], we may also assume that {U(t) : t € [0,1)} is piecewise smooth.
Let ®: A® Z, 4 — B ® 2,4 be defined by

D(a®b)(t) = U*(t)((¢o ®ida,)(a®@b(t)U(t) for all t€[0,1) and  (e5.53)
Pla®b)(1) = 1 ®@ida,(a®@b(1)), (e5.54)

foralla @b e A® Z, 4. Exactly the same argument in the proof of Lemma 5.2 around (e 5.23)
and (e5.24) show that

KL(®) = [Ep|lo KL(¢) o [E4] L. (e5.55)
We claim that
@IoEiosA:(EB)io'yosA. (e5.56)

To compute ®F, let z € s4(K1(A)) and vy € U(My(A)) (for some integer k > 1) such that
T = x. Let wo € U(B) such that its image wo = v(z). Put wy = wo ® 1z,, € B® Z, 4. Then
w(t) =w(t') for all t,¢' € [0,1] and

EiB oyosy(x) =w. (e5.57)

Put w := diag(w, 1x.1). In what follows, we will use H for H ® idps, (for a map H) and U(t)
for U(t) ® 1y, Let Z = (® o Ea(vg))w* € M(B) ® Z,4. By the second part of (e5.43) and
by (e5.55), [Z] = 0. Suppose that there is a piecewise smooth continuous path {Zi(t,s) : s €
[0,1]} C Myy1(My(B) ® Z,4) such that Z1(t,0) = diag(Z(t), 1,,) and Z;(t,1) = 1,,41. Then,
in Af(T(B ®2p4))/pBoz, ,(Ko(B® Zy4)), by (€5.43) and wo = v(z),

Det(Z1(t,s))
= Det(Z1(t, s)(w(y ®idz, (Ea(v)"))) + Det((¢ ®idz, ,)(Ea(vo))(Ep(wp)))
= Det(Zi(t,s)(w(y ®idz, (Ea(vo)*))) + ho ([vo]), (e5.58)
where we identify T'(B) with T(B® Q), and (hosa(z))(Tt®6:) = h([vo])(7) for all T € T(B® Q)

and t € [0,1]. By (e5.46) (see also (e5.47)), there is a continuous and piecewise smooth path
{z(t) : t € [0,1]} in Up(My (B, ® My) ® 1p,) such that

2(0) = (Bo o (vo ® 1pg,) @ 1ag,)((¥(vo) ® 1ag,) ® 1ay,), 2(1) =1 and
1 Z\S
217ri/0 T(dd(s )Z(S)*)ds = —(h([vo])(7) + (fé(.r))(T) for all 7€ T(A® M,).
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Define Zs(t,s) = Z1(t, s)(w(y @ idz, ,(vo)*)(£a(vo)*)). We also have

Z5(t,0) = (U*(t)(Bo o ¥(vo) ® 1ag,) ® 1ag, )U()(¥(v0) ® 10)", 1m), (e5.59)
Z3(0,0) = (((Boo (¥(vo) ® 1n,)) ® 1ag,) (¥ (v0) @ 1Q)", 1), (e5.60)
Z3(1,0) = (((B1 o (¥(vo) ® 1ng)) ® 1z, ) (¥ (v0) @ 1Q)", 1) (5.61)
Note that
Det(Z2)(t ®09) = —h([vo]))(T) + hoo(7) and (5.62)
Det(Z2)(t ®01) = —(h([vo])(T) + h1,o(T) (5.63)

for some hoo € pp, (Ko(By)) and hio € pp,(Ko(By)). Recall that we have identified T'(B) with
T(B ® M,) as well as T'(B ® Q). It follows from Lemma 3.6 that (see also lines above (e 5.30)),
there is f € ppez, ,(Ko(B ® Z,4)) such that for each ¢ € [0,1],

Det(Zy1(t, s)w((¢ ® idz, ) (Ea(vo)*))) (T © 6;) (e5.64)

1 1 dZQ(t,S) "
= Det(Z)(r @) = (5 i T(TZZ(t,s) )ds) () (e5.65)
= —h(sa(@)(1) + f(T @ 8). (e5.66)

Therefore, by (e5.44) and by (e 5.58), the map

T(B® Zpq) 27T ® s, (where 7 € T(B), s, €T(2y4)) —Det(Z1(t,s)) (T ® s,),

where 7 € T(B), s, € T(2y,4), defines an element in ppgz, ,(Ko(B ® Z4)). Hence (IDIOEi(x) =
W = (Eg)* o y(x). This proves the claim.
Denote by 7 : Z, 4 — Z the unital embedding given by Proposition 3.3 of [23]. Consider

= (idp®n)odo Ey4.

One then checks that
[pl= ] in KL(A, B), ¢y =1y

Since B is Z-stable, Z itself is strongly absorbing and every unital endomorphism of Z is
approximately inner (Theorem 8.7 and Theorem 7.6 of [10]), (idg ®n)* o EiB =1id. By (e5.56),

(piOSA o (idB®n)io¢ioE1¢405A = (id3®n)¢o(EB)ioyosA =084,

which implies ! ="7.
O

Theorem 5.4. Let A be a unital finite separable amenable simple Z-stable C*-algebra which
satisfies the UCT. Then there exists a sequence of unital separable amenable simple Z-stable C* -
algebras A, such that K;(A) are finitely generated (i = 0,1) and a sequence of homomorphisms
O+ Ap = Apg such that A =limy, o0 (An, ©n) and on,; @ Ki(An) = Ki(An41) is injective.

Proof. Let G% C Ky(A) be a sequence of finitely generated subgroups satisfying
[la]e¥cGyc---cG2c---, and Ky(A) =UGY,
and let G C K1(A) be a sequence of finitely generated subgroups satisfying

GilcGic---cGlc--, and K;i(A)=UG..
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Recall the Elliott invariant of A is described as ((Ko(A), Ko(A)+,[14]), K1(A), T(A),r4), where
74 : T(A) — S(Ko(A)) is the canonical map. Let A = T(A) and r = r4. Define r,, : A — S(G9)
by ra(7) = £(7) gy,

By Corollary 13.51 of [6], there is a separable simple amenable unital Z-stable C*-algebra
A,, such that

((Ko(An), Ko(An) 1, [14,]), K1(An), T(An),7a,) = (G, G5, N Ko(A) 4, [14]), G, A, 1) -
By lemma 5.2 above, there is a homomorphism ¢,, : A, — A,+1 such that
(SOn)*,O : Ko(An) = G?z — Ko(An+1) = G2+1 and (Spn)*,l t K1 (An) = G%L — Ki(Ant1) = G%Hrl

are the inclusion maps, and (op)r : T(Ap+1) = A — T(A4,) = A is the identity map. Let
B := lim;, oo (Ap, pn). Then, from the construction, A and B have the same Elliott invariant
and therefore are isomorphic to each other by Corollary 29.9 of [6] and Theorem 4.10 of [3]. [

Theorem 5.5. Let A and B be unital finite separable simple Z-stable C* -algebras. Suppose that
A is amenable and satisfy the UCT and ¢gTR(B ® Q) < 1. Fizx a splitting map ss : K1(A) —
U(A)/CU(A). For any € > 0 and any finite subset F C A, there exist a finite subset P C K(A)
and a finite subset U C U(A) such that, for any two unital homomorphisms ¢, ¥ : A — B, if

KL(¢)lp = KL(Y)|p, pr =7 and (€5.67)
(¢ o s4)lprr(a) = (¥ 0 54) Pk, () (€5.68)

then there exists a unitary u € B such that
lu*o(a)u —1p(a)|| < e for all a € F. (€5.69)

Proof. Tt follows from Theorem 5.4, we may write A = lim,_o(Ap,tn), where each A, is a
unital separable amenable simple Z-stable C*-algebra with finitely generated K;(A;) (i =0,1),
and ¢, : Ay, — Ap41 is a unit moenomorphism. Therefore there exists an increasing sequence
F1 C Fo C - C Fp C Fuq1 C -+ of finite subsets of A such that there are finite subset
Gn C Ay, with the property iy, (9n) = Fn (n=1,2,...) and and U2, F,, is dense in A.

Let € > 0 and a finite subset F C A be given, without loss of generality, we may assume
that F C F,, for some integer n > 1. Since K;(A,,) is finitely generated (i = 0,1), by Corollary
2.11 of [2], there is a finitely generated subgroup F' C K(A) such that, if k1,ks € KL(A,, B)
and k1|p = Ko|p, then K1 = ky. Let Q C F be a finite generating set. Define P = [15, 00](Q).

Now suppose that ¢,1 : A — B are two unital homomorphisms which satisfy (e 5.67) and
(e5.68). Then

KL(potnoo) =KL 0tneo), (90 tnoo)t = (¥ 0tnoeo)s and o wao =1o Lffwo. (e5.70)

It follows from Theorem 4.3 that there exists a unitary u € B such that

14" @ © tn00(g)u = P 0 tn,oo(g)ll < & for all a € G (e5.71)

It follows that
|lu*p(a)u —(a)| < e for all a € F,. (e5.72)
O
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Theorem 5.6. Let A and B be two unital finite separable simple amenable Z-stable C*-algebras
which satisfy the UCT. Let ¢ : A — B be a unital homomorphism. Suppose that

h € Homy (K, (A), AR(T(B))/p5(Ko(B)))
(see Definition 2.9 for the notation). Then there exists a homomorphism 1 : A — B such that
KL(¥) = KL(p), b = pr and (¢ — ¢} o sq = h. (e5.73)

Proof. Let v := ¢t — hoII%%. Then ([p], or,7) is compatible. By Lemma 5.2 (see also the
second part of 2.10), there is unital a homomorphism v’ : A — B such that KL(¢') = KL(p),

(¥")r = ¢ and
ho := ((¢')* =) 0 54 € Hom(K1(A),Rpp(Ko(B))/ps(Ko(B))).-

Then
(@) —¢hosa= ((zp’)1t —(y+ho H;“)) 054 =ho— h. (€5.74)

It follows from Theorem 5.1 that hg — h € Homg ¢(K1(A), Aff(T(B))/pp(Ko(B))). Since h is
in Homgy(K1(A), AfF(T(B))/pp(Ko(B))), so is ho.

Let K 1(A) = U2 Gy, where G,, C Gy is an increasing sequence of finitely generated
subgroups. Since hy € Homgy (K1 (A), Aff(T(B))/pp(Ko(B))), there are homomorphisms h,, :
K1(A) — Aff(T(B)) such that Y g o h,lg, = —holg,, n = 1,2, ... (see 2.5 for ¥). Since hg €
Hom(K1(A),Rpp(Ko(B))/pp(Ko(B))), hnlg, € Hom(Gy, Rpp(Ko(B))). Since Rpp(Ko(B)) is
divisible, there exists homomorphism hg,, : K1(A) = Rpp(Ko(B)) such that ho,|a, = hnla, -

By the second part of 2.10, gTR(A ® M,) < 1 and ¢T'R(B ® M,) < 1 for any supernatural
number t of infinite type. By Lemma 5.2, there is a homomorphism ¢, : A — B such that

KL(pn) = KL(W) = KL(@), ¢np = 1 and (@' — gh) o 54 = hn. (e5.75)

Let F,, C Fn41 be a sequence of finite subsets of A such that U2, F, is dense in A. By
applying Theorem 5.5, we obtain a subsequence {¢,, } and a sequence of unitaries {u} of B
such that

1wk 1Pny i1 (@)urs1 — Yr(a)] < 1/2]€+1 for all a € Fy, (e5.76)

where ¢y = 1, and ¥4 = Aduji100n, 4,7 =1,2, ...

Then {¢(a)} is a Cauchy sequence for each a € A. Let ¥(a) = limy_,o ¥x(a) for a € A.
Then 1 defines a unital homomorphism from A to B. Since K L(yy) = KL(y) and ppp = @1
for all n € N, one concludes that

KL(¢) = KL(p) and 1 = @r. (e5.77)
Note hy|G, = hola, , by (€5.75),

@"* — ¥ o sala, = —holg,, n=1,2, ... (e5.78)
It follows that
(" —yt) o 54 = —ho. (5.79)
Finally,
(=M osa= (ot~ osa+ @ —vhosa=—(ho—h)—ho=h.  (5.80)
O
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Definition 5.7. Let A be a unital separable C*-algebra with stable rank at most n such that
T(A) # 0. Let j : AfE(T'(A))/pa(Ko(A)) = Uo(Mn(A))/CU(Mn(A)) C U(Mn(A))/CU(Mpn(A))
be the embedding.

Define RY := j(Rpa(Kq(A))). Denote by U(A)/CU(A)® the quotient group
(U(Mn(A))/CU(Mn(A)))/R? and

T3 U(Ma(A))/CU(Ma(4)) = U(Ma(A4))/R” = U(Ma(A))/CU (M (A))*

is the quotient map. Denote by 75 : U(M,,(A))/CU (M, (A))® — K;i(A)
and A\E : Aff(T(A)) — Aff(T(A))/Rpa(Ko(A)) be the quotient map. Since Rpa(Ko(4)) is a
divisible subgroup (a real subspace of Aff(T'(B)), in fact), there is a splitting map

s 1 U(My(A))/CU(M,(A)® — U(M,(A))/CU(M,(A)) (e5.81)

R,cu .
such that HA’C ¢} S’A = 1dU(Mn(A))/CU(Mn(A))R .
If B is another separable C*-algebra with stable rank at most n such that T(A) # () and

¢ : A — B is a unital homomorphism, then ¢ induces a continuous homomorphism @R

U(Mn(A))/CU(Mp(A)* = U(My(B))/CU (M (B))*.

Let k € KLe(A,B)™ and rr : T(B) — T'(A) be a continuous affine map.

Let v® : U(M,(A))/CU(M,(A))® — U(M, (B ))/C’U( 2(B))® be a homomorphism. We
say (k,kr,7") is compatible, if (k, k7) is compatible, 7 |Aff (F(A)) Rpa(Ro(A)) is induced by k7,
and 7.[.IRcu o ,.YR — ’{|K1 (4) © ﬂ-ﬂl}CU

Denote by Hom, .. (U (M, (A ))/CU(Mn( NE,U(Mu(B))/CU (M, (B))R) the set of all ho-
momorphisms V® : U(M,(A))/CU(M,(A))R,U(M,(B))/CU(M,(B))® which are compatible
with (k, k7). Fix

g€ Hom,ﬁy,ﬂT(U(Mn(A))/CU(Mn(A))R, U<Mn(B))/CU(Mn(B))R)7
then

{g—8: B € Homy p, (U(M(A))/CU (M, (A))¥, U(Mn(B))/CU (M (B))¥)}
— Hom(K, (A), Afi(T(B))/Rps (Ko (B))). (e5.82)
We use the notation I'Y for the bijection 8+ g — 5. Thus we will view it as an abelian group.

For the simplicity of notation, we will use U(A), CU(A) and CU(A)® for U(M,(A)),
CU(M,(A)) and CU(M,(A))¥, or simply assume that the algebras A and B have stable rank
1, and therefore n-="1.

Proposition 5.8. Let (k, k1) be a compatible pair. Then there is a splitting short exact sequence:

0 — Hom (K7 (A), Rpp(Ko(B))/pp(Ko(B))) (5.83)
— Homy .. (U(A)/CU(A),U(B)/CU(B)) (e5.84)
— Hom,, .. (U(A)/CU(A)®,U(B)/CU(B)¥) — 0. (€5.85)

Proof. For each ¢ € Homy ., (U(A)/CU(A),U(B)/CU(B)), consider II% o ((x) for all €
U(A)/CU(A). Since

C(Rpa(Ko(A))/pa(Ko(A))) C Rpa(Ko(B))/pa(Ko(B))

as ( is compatible with (k,x7), II% o ¢ vanishes on Rp4(Ko(A ))/pA(KO(A)) which uniquely
defines a homomorphism I#®(¢) € Hom, ,..(U(A)/CU(A)R, U(B)/CU(B)¥). Fix
)

g € Hom,, ,.,.,(U(A)/CU(A),U(B)/CU(B))
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and let g := II"'%(g) € Homy, ... (U(A)/CU(A)R,U(B)/CU(B)®). Using T'Y and I'Y and viewing
Homy, .. (U(A)/CU(A),U(B)/CU(B)) and Homy, ..(U(A)/CU(A)¥,U(B)/CU(B)®) as abelian
groups as described in 2.9 and 5.7, then

7R . Hom,, .. (U(A)/CU(A),U(B)/CU(B)) — Hom, .. (U(A)/CU(A)X U(B)/CU(B)¥)

defines a homomorphism. If Iy ®o(g—() = 0, then g(z)—((x) € Rpa(Ko(B))/pa(Ko(B)) for all
x € U(A)/CU(A). Since g and ¢ are both compatible with (k, k1), g—¢ defines a homomorphism
from K;(A) to Rpa(Ko(B))/pa(Ko(B)). Conversely, if g — ¢ defines a homomorphism from
K1 (A) into Rpa(Ko(B))/pa(Ko(B)) (not just into Aff(T'(A))/pa(Ko(B)), then IR (g—¢) = 0.
It follows that

kerIT?'® = Hom (K1 (A), Rpp(Ko(B))/ps(Ko(B))). (e5.86)

For each ¢ € Hom,, .. (U(A)/CU(A)R,U(B)/CU(B)®), define a homomorphism
¢:U(A)/CU(A) - U(B)/CU(B) by ( =spo&o Hﬁ’cu. Since (see the line below (e5.81))

() = (5™ o sh)(§ o ;™) = €0 T,
we have
AR (sY 0 € o TIN™M) = €. (e5.87)
This implies that IR is surjective. Define
SHR . Hom,, .. (U(A)/CU (AR, U(B)/CU(B)*) — Hom, ., (U(A)/CU(A),U(B)/CU(B))

by SHE(¢) =% 0 Hﬂj’cu. Then, by (e5.87), S#® is the splitting map.

Proposition 5.9. (See Definition 2.9 for the notations.)
Homg (K1 (A), Aff(T(B))/ pp(Ko(B))) = Hom (K, (A)/Tor(K1(A)), Aff(T(B))/pp(Ko(B)))

and

Homalf(Kl(A),RPB(KO(B))//)B(KO(B)))
= Hom(K(A)/Tor(K1(A)), Rpp(Ko(B))/pp(Ko(B)))- (e5.88)

Proof. Suppose that £ € Homg, r(K1(A), Aff(T(B))/pp(Ko(B))).Write K1(A) = Us2 Gy, where
G, C Gpyy and each Gy, is finitely generated. For any x € Tor(K7(A)), there is an integer n > 1
such that z € G,,. Choose h,, : K1(A) — Aff(T(B)) such that ¥ goh,|q, = £|q,, - Since Aff(T'(B))
is torsion free, hy,(7) = 0. It follows that £(z) = 0. In other words, §|ror(x, (4)) = 0. Therefore £

gives a unique homomorphism ¢ in Hom(K1(A)/Tor(K1(A)), Aff(T(B))/pr(Ko(B))). The map

G : Homgp(K1(A), Aff(T(B))/pp(Ko(B)))
— Hom(K1(A)/Tor(K1(A)), Aff(T(B))/ps(Ko(B))) (€5.89)

given by & — £ is an injective group homomorphism.
To see the surjectivity, let ¢ € Hom(K7(A)/Tor(K1(A)), Af(T(B))/pp(Ko(B))). Define ( :

Ki(A) — Af(T(B))/pp(Ko(B)) by ¢ := ( oq, where ¢ : K1(A) — K1(A)/Tor(K1(A)) is the
quotient map.
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For each n € N, let G,, be the image of G, in K1(A)/Tor(K1(A)). Then G,, is a free abelian
group. Therefore there exist a homomorphism A, : Gy, — Aff(T(B)) such that Xpo A, = (|g, -
Since Aff(T'(B)) is divisible, there is an extension An @ K1(A)/Tor(K1(A)) — Aff(T(B)) such
that A\p|g, = An.

Define 7, : K1(A) — Aff(T(B)) by 4/, := An 0 q. Then
Cle, = XB o Vlc,- (€5.90)

This implies that
¢ € Homg ¢ (K1 (A), AE(T'(B))/ pp(Ko(B)))-

But G(¢) = ¢. So the map is surjective.
The second identity follows from the first one. O

Theorem 5.10. Let A and B be unital finite separable simple amenable Z-stable C*-algebras
which satisfy the UCT. Then, for every compatible pair (k,rr), where K € KL.(A, B)*t and
kr : T(B) — T(A) is an affine continuous map, there exists a splitting short exact sequence

0 — Hom(K1(A)/Tor(K1(A)), Rpp(Ko(B))/p(Ko(B))
— Homy, s app(A, B)
— Homy, ., (U(A)/CU (AR U(B)/CUA)F) = 0. (e5.91)

Proof. By Theorem 4.3 and Theorem 5.2, for each compatible pair (k, k1), there is a one-to-one
map

I' : Homy, s app(A, B) — Homy, .. (U(A)/CU(A),U(B)/CU(B)) (e5.92)
which is not void. So I'(Homy scp..app(4, B)) is a subset of
Homy, ... (U(A)/CU(A),U(B)/CU(B)). Choosing a splitting map
s 1 U(A)/CU(A)R — U(A)/CU(A), by Theorem 5.2 and Proposition 5.8, the quotient map
IR+ Homy, o, (U(A)/CU(A),U(B)/CU(B))) — Homy ., (U(A)/CU(A)¥,U(B)/CU(B)F)

restricting on I'(Homy, s, app(A, B)) is surjective. Fix [p] € Homy sy app(A, B). If
[¢] € Homy oy app(A, B) and TIHR(T([¢])) — THR(D(([4)])) = 0, then, by Theorem 5.1,

h = T([g]) — () € Homas (K1 (A), Rop(Ko(B)) /o5 (Ko(B)). (e5.93)
By Theorem 5.6, there is 17 : A — B such that

KL(41) = KL(p), 17 = rr and (o' —¢f)oss =h. (e5.94)

This implies, applying Theorem 4.3, that Homgr(K1(A),Rpp(Ko(B))/pp(Ko(B))) is a sub-
group in the subset T'(Homy, ;. app(A, B)) of an abelian group. Since II"EoT (Homy, 7. app(A, B))
is a group, we conclude that I'(Hom, s, app(A, B)) is a subgroup of
Homy, .. (U(A)/CU(A),U(B)/CU(B)). Thus we obtain the short exact sequence, applying also
Proposition 5.9.

To show that the short exact sequence splits, it suffices to show that
Hom(K;(A)/Tor(K1(A)),Rpp(Ko(B))/ps(Ko(B))) is divisible. But this is immediate since
RpB(K()(B))/pB(K()(B)) is divisible.

O]
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Corollary 5.11. Let A and B be two finite separable simple amenable Z-stable C*-algebras
which satisfy the UCT. Then

Hot,er (U(A)/CU(A), U(B)/CU(B)) /Hot ey app( A, B)
> Hom (K (A), Rpp(Ko(B)) /p5(Ko(B)))/Homa (K1(A), Bpp (Ko(B))/ps(Ko(B))).

Theorem 5.12. Let A and B be finite unital separable simple amenable Z-stable C*-algebras
which satisfy the UCT. Suppose (k,kr) is a compatible pair, where k € KL.(A, B)™" and
kr @ T(B) — T(A) is an affine continuous map. Then there exists a unital homomorphism
¢ : A — B such that (KL(p),¢r) = (K, k7). Moreover,

Homy, s app(A, B) = Hom (K (A)/Tor(K:(A)), Aff(T(B))/p(Ko(B))). (€5.95)

Proof. By Theorem 5.2, there exists a unital homomorphism ¢ : A — B such that (K L(y), ¢7) =
(K, k7). Let I' : Homy, 0 app(A, B) — Homy, .. (U(A)/CU(A),U(B)/CU(B)) be the one-to-one
map introduced in (€5.92). Put g :=T'(¢). If ¢p : A — B is another unital homomorphism with
(KL(’(?b)a wT) = (Kv K'T)a Then, by Theorem 5.1, g*d)i € Homalf(Kl(A)v AE(T(B))/[)B(KO(B»)
In other words,

9 o I'(Homy, sz app(A; B)) € Homap(K1(A), AfF(T(B))/ pp(Ko(B)))-
Note that I'Y is also one-to-one. It follows from Theorem 5.6 that I'Y o I' is surjective. Hence
Homy yip,app(A; B) = Homg ¢ (K1 (A), AME(T(B))/pp(Ko(B))).
Applying Proposition 5.9, one obtains

Homy, srapp(A; B) = Hom(K1(A)/Tor(K1(A)), Aff(T(B))/p(Ko(B)))-

O

Corollary 5.13. Let A and B be unital finite separable simple amenable Z-stable C*-algebras
which satisfy the UCT. Then, for any compatible triple (k, k7, ky), where K € KL (A, B)TT,
kr : T(B) = T(A) is an affine continuous map and k- : U(A)/CU(A) — U(B)/CU(B) is a
continuous homomorphism, there is a unital homomorphism ¢ : A — B such that

KL(p) =k, or = kp and @' =k, (e5.96)

if one of the following holds:
(1) TR(B) <1,
(2) 5(Ko(B)) = Rop(Ko(B)),
(3) Hom(K (A), Rps(Ko(B))/p5(Ko(B))) = Homas (K1 (A), Ros(Ko(B))/p5(Ko(B))).
(4) K1(A) is torsion free.

Proof. Note that (2) follows from Theorem 5.10 immediately. Therefore, by Proposition 3.6 of
[14], (1) follows.
Also (3) follows from Corollary 5.11. Moreover, (4) follows from Theorem 5.12.

Remark 5.14. There are plenty of examples of

Hom(K1(A),Rpp(Ko(B))/pp(Ko(B)))/Homa(K1(A), Rpp(Ko(B))/pp(Ko(B))) # {0}
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In those cases, there are compatible triples (k,x7, £) which cannot be represented by homo-
morphisms from A to B.

To illustrate this, let us consider a simple example. By Theorem 13.50 of [6], there is a unital
separable simple amenable Z-stable C*-algebra A with a unique tracial state 74 satisfying the
UCT such that (Ko(A), K1(A)+,[1) = (Z,Z+,1) and K1(A) = Z/mZ for some prime number
m > 2. Note that, one has the following splitting short exact sequence

0= R/Z — U(A)/CU(A) — Z/mZ — 0. (e5.97)

Let B =Z be the Jiang-Su algebra. Note that KL(A, B) = KK (A, B) = Hom(Z, Z)®Ext(Z/m, Z).
Let k € KL.(A, Z)" with k([14]) = [1z] (there are m such elements, we will fixed one). By
Lemma 5.2, there is a unital homomorphism ¢ : A — Z. Then ¢* : U(A)/CU(A) = R/Z is
a homomorphism which is compatible with (k,¢), where ¢ induces the identity map on R. It
follows that kerg! = Z/mZ. One may also write

U(A)/CU(A) = R/Z @ kergt, (€5.98)
Note that
Hom,, ,(U(A)/CU(A),U(Z)/CU(Z)) = Hom(Z/mZ,R)Z) = Z/mL. (¢5.99)
Since K1(A) = Z/mZ is torsion,
Hom, (K1 (A),R/Z) = Hom(K;(A)/Tor(K1(A)),R/Z) = {0}. (e5.100)
Therefore, by Theorem 5.10, Hom,, (A4, B) has only a single point. So
Hom, , app(A, B) # Hom, ,(U(A)/CU(A),U(Z)/CU(Z)). (5.101)

Proposition 5.15. Let B be a unital finite separable simple amenable Z-stable C*-algebra which
satisfies the UCT such that Rpp(Ko(B)) # pp(Ko(B)). Then, for any unital separable simple
amenable Z-stable C*-algebra which satisfies the UCT with Tor(K;(A)) # {0}, and for any
compatible pair (K, kr), where kK € KL.(A, B)™ and rp : T(B) — T(A) is a continuous affine
homeomorphism, there is<a compatible triple (k,kT, k), such that no unital homomorphism
@ : A — B has the property that

(KL(9), o1, ") = (K, K1, iy (€5.102)

Proof. Fix a compatible triple (x, 7), where k € KL.(A, B)*" and rp : T(B) — T(A) is a con-
tinuous affine homeomorphism. It follows from Lemma 5.2 that there is a unital homomorphism
1 : A — Bsuch that KL(v) = k and ¢p = k.

Let . € K1(A) \ {0} such that pr = 0 for some prime number p > 1.

Since Rpp(Ko(B)) # pp(Ko(B)), there is y # 0 in pp(Ko(B)) such that

{reQ:rye€pp(Ko(B))} (e5.103)

is not dense in R. Note D = {7 : n € NU{0},m € Z} is dense in Q. Therefore there must be
an integer n € N such that

(1/p" )y & pp(Ko(B)) and (1/p")y € pp(Ko(B)). (€5.104)

Put zg = (1/p"*)y. Then pzg € pp(Ko(B)). Let z be the image of zg in Rpg(Ko(B))/pr(Ko(B)).
Then z # 0 and pz = 0. Let G be the subgroup of Kj(A) generated by z. Then G, =
Z/pZ. Define a homomorphism h; : Gy — Rpp(Ko(B))/ps(Ko(B)) by hg(z) = z. Since
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Rpg(Ko(B))/p(Ko(B)) is divisible, there is a homomorphism & : K1(A) — Rpg(Ko(B))/ps(Ko(B))
such that h|g, = hs.

Now define k., : U(A)/CU(A) — U(B)/CU(B) by K~ := ¢ + h o II%. Then (k, k7, k) is
compatible. If there were a unital homomorphism ¢ : A — B such that ¢t = K~, then, for a
fixed splitting map s4,

(0! — ¥%) 0 54 € Homg (K1 (A), Rpp(Ko(B))/ps(Ko(B)). (€5.105)

But
(pf =yt osa=holl} oss=h (€5.106)
which is not in Homg(K1(A), Rpp(Ko(B))/p5(Ko(B)). A contradiction. 0

Remark 5.16. Note that if A is a unital separable simple C*-algebra such that ¢T R(A® M,) <
1 for some supernatural number p of infinite type, then A, as a C*-subalgebra of A ® M, must
have a finite faithful trace. In particular, A is stably finite.

Theorem 5.6, 5.10, and 5.12, Corollary 5.11 and 5.13, and Proposition 5.15 all hold if we
replace the condition that B is amenable and satisfies the UCT by ¢T'R(B) < 1, since we only
use that before 5.6. If we further assume that K;(A) is finitely generated (¢ = 0,1), then the
condition that A is Z-stable can be replaced by ¢gTR(A® Q) <1 as we do not need 5.4 and 5.5.

6 Sequence of maps, another description
Definition 6.1. Set
I == {f € Co((0,1], M) : f(1) € Cli}. (6.1)
Put A®) = A® T, and A®) the unitization of A®). We may identify
AR = {f € O([0,1), A® My) : f(0) € Cl; and f(1) € A® 1;). (€6.2)

Note K;(A ® Ij) is identified with K;y1(A,Z/kZ) (see 1.2 of [2]). Let 1, : A®) — A be the
homomorphism defined by 7;(f) = f(1) for all f € A®). Consider the short exact sequence

0— S(My(A) - AR T,—25A — 0, (€6.3)

where S(My(A)) = {f € C([0,1], M) : f(0) = f(1) = 0}. It gives the following six-term exact
sequence (see equation (1.6) of [2]).

Ko(A) — Ko(AZ/kZ) ™3 Ki(A)
Tk Ik (e6.4)
Ko(A) " K\(A,ZJkZ) + Ki(A).

One also has a (unnaturally) splitting short exact sequence
0 — Ko(A)/kKo(A) = Ko(A,Z/kZ) — Tor(K1(A),Z/kZ) — 0, (6.5)

where Tor(K1(A),Z/kZ) = {y € Ki(A) : ky = 0}. Fix a splitting map jj : Tor(K:(A),Z/kZ) —
Ko(A,Z/kZ). Then, combining (e6.4),

N1 © Jk = 1dmor(ky (4),2/k2) - (e6.6)
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Let 7€) : A®) — C be the quotient map and <W§4W(A(k)))u : U(My(A®)) — U(M,(C)) be
the induced group homomorphism. Define for any n > 1

U(Mp(A@Ty))" = ker(n, )" = {u € Mu(A®) : 750 @ idn(u) = 1,}. (e6.7)

Denote by CU (M (A ® 1)) = CU(My(A @ L)) N U(My(A @ I,))".

Definition 6.2. Let D be a non-unital C*-algebra with T'(D) # (). For each f € Aff(T(D)),
define LﬁD : AF(T(D)) — Aff(T(D)) by LﬁD(f)(at@ +(1-a)r)=(1—-a)f(r) forall 0 < a <1,

7 € T(D) and t¢ € T(D) such that tc|p = 0, where t¢ :=t o 75 and where 7% : D — C is the
quotient map and ¢ is the unique tracial state on C. Put

A(T(D))" = {5 (f) : f € Af(T(D))}C AF(T(D)).

Definition 6.3. Let £ = 0,2, .... Suppose that A is a unital C*-algebra and has stable rank at
most n — 1. Note, since Ko((A®1})) is a torsion group, P (Ko((A®1y)") =Z- 17, where 17

represents the constant affine function on T'(A(*)) with value 1. Then

P (Eo(A® L)) =Z-1r.

One then checks that Aff(T'(A® Ix))" N P (Ko((A® 1)) = {0}.
On the other hand, let z € K1(A®]I) and u € U(M,,(A®]Ix)) be a unitary which represents

(C o . . . . o
x. Suppose that TFMH(N))(,LL) = z which is a scalar unitary. Let Z € M, (C 1A<k)) be the same

scalar matrix in Mn(@) Put v = uZ*. Then [v] = [u] in K1(A®]1)) and v € U(A®[})*. This
implies that II(,), the restriction of Hiﬂ(;) on U(A®1I})"/CU(A®]I})" is surjective. Thus, from
the short exact sequence

cu

0 = A(T(AR)/Z — U(M;,(AW)) /CU (M (A®))) 2% K (A S 0, (€6.8)
one obtains the following short exact sequence

cu

0= A (T(A® ) = UM (AR 1)) /CUM(A® L)) 25 Ki(A®I) —0. (e6.9)

Let A and B be unital C*-algebras of stable rank no more than n — 1. Fix a compatible pair
(K, k). Then k7 induces an affine continuous map 7®s — k7 (7)®s from T(B® 1) to T(A®1)

which in turn induces an affine continuous map Rék) CA(T(A L)) — Aff (T(B®1))". Let
K UM (AT /CUM(A® L))" — UM, (B ©1,))"/CU(Mq(B ©1,) be a continuous
homomorphism. We say that (k, Kk, mk ) is compatible, if the following digram commutes.

e
0o AF(TARIL)) — UMARL))/CUM(ARL)) 25 K(A®I,) —0
\I,ng) \I/KEYk) \]’H‘KO(A,Z/I@Z) (6610)
5

0—- AfT(B®I)) — UM, (BL))/CUM,(BeI)) — Ki(B®Il) —O0.

Recall that Aff(T(A®I))" is identified with Aff(T(A®ILk))"/p 7 (Ko(A ® I;™)). Note that
the homomorphism 7 also gives the following commutative diagram
e,
0=  Af(T(A®L)) = UM (A2T) /CUM,(AcT) 2% K ((A®L) —0

dng, ini . il a,2/52) (e6.11)
0— Aff(T(A))/pa(Ko(A)) — U (Mo (A))/CU(My(A)) ELC N
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Denote by kr := {mgk)}kzo’gw a sequence of homomorphisms. We say (k, k7, kr) is totally
compatible if, for each k > 2, the following digram commutes

{"fcu/o__) AfF(T(AF) e . U(]\LL(AU“)))L/Cl(Jk()]Mn(A<k)))L —[nk]> Ki(A®)y 49
0 — AfI(T(A))/pa(Ko(A)) l U(Mn (A))/CU(Mqn (A)) JW K1(A) [ 0
T 0 — AfF(T(B®))* T U(Mn(B®))/CU (M (BX)) 4'% Ki1(BR) ——— o0
A /
0— AE(T(B))/PB(KO(B())/ U(Mn (B))/CU(Mn(B)) Kl(B)/ 0.

Note that the assumption that C*-algebras have finite stable rank is not necessary. We put
it here for convenience so we do not need to draw infinite matrices.

Proposition 6.4. (1) The short exact sequence of (e6.9) splits uniquely for k > 2.
(2) Suppose (k, K Kp) and (K, K1, K F) are totally compatible, where r = {/, ,(yk) ck>2}
and Kk = {Iif;,li R 2}, and, K., K 1 U(Mp(A))/CU(My(A)) — U(Mn(B))/CU(Mn(B)),

and
W 5 U (Mo (AW))CU (M (A®))* = U (M (B®))/CU (Mo (B

are continuous homomorphisms. Then (/@7 — /-17) induces a homomorphism in

Hom(K, (4)/Tor(K1 (4)), AR(T(B)) fop(Ko(B))).
(8) In (2), if K., = K7, then Ky = K.

Proof. (1) The fact that the short exact sequence splits follows from the fact that Aff (T'(A ® Ix))*
is divisible. Let s,u) be a splitting map. Then Hf;(k) O S k) = idKl(A(k))' Suppose that s :
Ki(A®l) — UMy(A®1))" /CU(My(A®]1))" is another splitting map. Then s 4 — $ maps
K1 (AW) to Aff(ARI})". However, Aff (T(A ® I,))* is torsion free and K1 (A®I}) = Ko(A, Z/kZ)
is torsion. It follows s 4 — s = 0.

(2) Let « € Tor(K;(A)). Choose an integer k > 2 such that kx = 0. Let Tor(K1(A),Z/kZ) =
{y € K1(4) : ky = 0}. Recall-that K1(A ® 1) = Ko(A,Z/kZ). Let s m : K1(A® 1) —
UM, (A®1))"/CU(M,(A®1}))" be the unique splitting map.

Suppose that (k, k7, k) and (k, k7, K1) are totally compatible. Then

k / k’ " .
(5 = 55 sz cay atiocay = O (e6.12)

Moreover, the map
(5P = 6" 0540 1 Ki(A® k) - AB(T(A )

has to be zero, as Aff(T(A ® I;))" is torsion free. In particular, for any element z with finite
order,

(Iigk)/ - Hgk)//) 0540 (2) =0. (e6.13)

By the 12-term commutative diagram above at the end of 6.3, for any
y e UM, (A1) /CU(M,(A®1))", one has

/ "
(6%, — k) omit(y) = mef (5" — £ (), (¢6.14)

where nP : B®I, — B is defined by nP(f) = f(1) for all f € B&I as n;, defined. As mentioned
above, since Aff (T'(B ® Ii))" is torsion free, if y has finite order,

/ 124
(6, — &2) o mit(y) = mef (5 — kD7) (y) = 0. (e6.15)
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By the 12-term diagram above, again, since s 4&) is unique,

Mewr = 15 07 0 5 400 (e6.16)
Therefore (recall (e6.6))
15 (ker(s7, — x7)) D Tor(K1(A), Z/KZ). (€6.17)

Consequently, for any splitting map s4 (see also (€6.12))

T(AR(T(A))/pa(Ko(A)) + sa(Tor(Ki(A), Z/KZ)) C ker(r!, — k), (¢6.18)

where J : (Aff(T(A))/pa(Ko(A)) = U(A)/CU(A) is given by the (inverse of) determinant map.

This implies that (x), — «7)(x) = 0. Hence

(K5, = K2) | Tor(k, (4)) = 0. (e6.19)

This proves (2).
(3) For any k > 2, by (1), since s 4) is unique, the diagram (e 6.10) becomes

ch
0= AF(TARL)) — ARTARL)) ®s,m(Ki(ARL)) 2% KAL) —0
iﬁé’“) i’n(f) ‘LK\KO(A,Z/km
ch

0— AF(T(BoI)) — AFTBOL)) @spmE(Be) 25 K(BoI) — 0.

Then, as Aff (T(A ® ;)" and Aff (T'(B ®1))" axe torsion free, and K1(A®1y) and K1(B®1I))

are torsion, we may write the decomposition /ﬁ(vk) = /Tﬁ(k)@/ﬂ Ky (AR which is uniquely determined

by k and k7. Thus (3) follows. O

Theorem 6.5. Let A and B be unital finite separable simple amenable Z-stable C*-algebras such
that A and B satisfy the UCT. Then, for any totally compatible triple (k,kr,kr), where Kk €
KLe(A,B)*t, kp : T(B) —T(A).is a continuous affine homomorphism, and kp = {/ﬁ»(yk)}k:()g,m
is as defined in 6.3, there is a unital homomorphism ¢ : A — B such that (KL(p), <pT,goiF) =
(K, KT, KT).

Proof. Fix a compatible pair (k, 1), by Lemma 5.2, there is a unital homomorphism ¢ : A — B
such that K L(¢)) = k, and ¢¥p = kp. Clearly that (K L(v), ¥, w%) is totally compatible.
Suppose that (k, k7, kr) is totally compatible. Then, by Proposition 6.4, ¥ — Kk~ induces a
homomorphism h € Hom(K7(A)/Tor(K1(A)), Aff(T(B))/ps(Ko(B))). It follows from Theorem
5.12 that there is a unique (up to approximately unitarily equivalent) unital homomorphism
¢ : A — B such that KL(¢) = K, o7 = kr and ¢* — pf = h. Tt follows that p* = K~. Since
(K, K, go%) is totally compatible, by Proposition 6.4, cpliﬂ = Kr. O

Remark 6.6. Theorem 6.5 provides a complement to Theorem 5.12 and is a consequence of
Theorem 5.12 as the proof presented. It also provides a seemingly more functorial description.
However, goi& is really a sequence of maps, and, by (3) of Proposition 6.4, most of the data
are redundant. It does not appear to fit Theorem 4.3, the uniqueness theorem, well enough as
Theorem 4.3 only requires one map @' from the list of goliﬂ.

By (1) of Proposition 6.4 (and its proof), for k > 2, the splitting map

47



is a natural map. It follows that the composition
Gt =1 0 s 40+ Ko(A, Z/KZ) — U(My(A))/CU(M,(A))

is also natural. By the last large diagram in 6.3, that (k, k7, kr) is totally compatible is equivalent
to say that (k, rr, k) is compatible together with (2 o K| Ko(AZ/kZ) = vy © ¢ for each k > 2.

In section 5, we state that, for a fixed compatible pair (k, kK7), Homy, sc; app(A, B) is a subset
of Hom,, 4., (U(A)/CU(A),U(B)/CU(B)). Theorem 5.10 and Theorem 5.12 provide a complete
description of this subset. One advantage of Theorem 5.10 and 5.12 is that it provides Corollary
5.13 which could not be seen from Theorem 6.5 as easily. More importantly it reveals that it is
the subgroup Rpp(Ko(B))/pp(Ko(B)) that prevents some of compatible triples (x, k7, £) from
realizing by homomorphisms (see also Proposition 5.15).

Theorem 6.7 (cf. Theorem 29.5 of [7]). Let A and B be unital finite separable simple amenable
Z-stable C*-algebra which satisfy the UCT. Suppose that there is an isomorphism v, : K;(A) —
K;(B) (i =0,1) and an affine homeomorphism kr : T(B) — T(A) such that vo([1a]) = [15] and
(pBovo(x))(T) = pa(z)(kr) for all x € Ko(A) and 7 € T(B). Then there exists an isomorphism
® : A — B such that ® induces v; (i = 0,1) and kp. Moreover, if there is a totally compatible
triple (k, k7, kr), where k € KL(A, B) such that k([14]) = [1B], k induces isomorphisms from
K;(A) onto K;(B) (i = 0,1), kr is an affine homeomorphism, and kp = {:‘if(yk)}k:()’zm is as
defined in 6.3, then there is an isomorphism ¢ : A — B such that (K L(v), ¥, w%) = (K, KT, KT).

Proof. The first part of the statement follows from Theorem 29.5 of [7] (and the last two sentences
of the proof). However, the first part also follows from the second part which can be proved using
the results of this paper. In fact, there is K € K L(A, B) which induces 7; (i = 0,1). By Theorem
5.2, there is a unital homomorphism ¢ : A — B such that (K L(y), ¢r, gpi&) = (K, kT, (,01{), which
is totally compatible. Hence the first part follows from the second part.

For the second part, by the UCT, thereis a k! € KL(B, A) (so that K x k' = KL(id4) and
(k~1, k') is compatible. Tt follows from Theorem 5.2 again that there is a unital homomorphism
¥ : B — A such that KL(¥) = ! and ¥y = k. Consider the endomorphism ¥ o ¢ :
A — A. Then KL(¥ o ¢) = KL(ida) and (¥ o ¢)r = idp(4). By Theorem 5.1, there is h €

Homyg; (K1 (A), Aff(T'(A))/pa(Ko(A))) such that
(idi1 —(Top))osy =h. (€6.20)

It follows from Theorem 5.6 that there is a unital homomorphism H’ : A — A such that
KL(H'") = KL(ida), Hy = idp(4) and ((H")* - idi) 0sq4=h. Then KL(HoWVoy)=KL(idy),
(H' oW o p)r =idpa) and

(H, oWo gp)i = idU(A)/CU(A) . (e 621)

Put H:= H' oW : B — A. Then, KL(H) = v~ !, Hr = /f;l and Hf = m;l. It follows from
Theorem 4.3 that H oy is approximately unitarily equivalent to id4 and ¢ o H is approximately
unitarily equivalent to idg . By the standard Elliott approximately intertwining argument, one
obtains an isomorphism ¢ : A — B such that KL(v) = KL(p), pr = k7 and ¢t = k.. It
follows from (3) of Theorem 6.4 that (plt = Kp. O

Remark 6.8. Our method heavily depends on the papers [6] and [7] and is in the same lines
of those of [18]. Two ingredients of the proof are Winter’s deformation method ([26]) and
asymptotic unitary equivalence of homomorphisms (see [15]). As this note was drafting, we
were aware that a general result of this type has been announced by J. Carrion, J. Gabe, C.
Schafhauser, A. Tikuisis and S. White which we understand does not use Winter’s deformation
method ([26]) and asymptotic unitary equivalence of homomorphisms.
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